Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae U. Jung is active.

Publication


Featured researches published by Jae U. Jung.


Nature | 2007

TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity

Michaela U. Gack; Young C. Shin; Chul Hyun Joo; Tomohiko Urano; Chengyu Liang; Lijun Sun; Osamu Takeuchi; Shizuo Akira; Zhijian J. Chen; Satoshi Inoue; Jae U. Jung

Retinoic-acid-inducible gene-I (RIG-I; also called DDX58) is a cytosolic viral RNA receptor that interacts with MAVS (also called VISA, IPS-1 or Cardif) to induce type I interferon-mediated host protective innate immunity against viral infection. Furthermore, members of the tripartite motif (TRIM) protein family, which contain a cluster of a RING-finger domain, a B box/coiled-coil domain and a SPRY domain, are involved in various cellular processes, including cell proliferation and antiviral activity. Here we report that the amino-terminal caspase recruitment domains (CARDs) of RIG-I undergo robust ubiquitination induced by TRIM25 in mammalian cells. The carboxy-terminal SPRY domain of TRIM25 interacts with the N-terminal CARDs of RIG-I; this interaction effectively delivers the Lys 63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, resulting in a marked increase in RIG-I downstream signalling activity. The Lys 172 residue of RIG-I is critical for efficient TRIM25-mediated ubiquitination and for MAVS binding, as well as the ability of RIG-I to induce antiviral signal transduction. Furthermore, gene targeting demonstrates that TRIM25 is essential not only for RIG-I ubiquitination but also for RIG-I-mediated interferon-β production and antiviral activity in response to RNA virus infection. Thus, we demonstrate that TRIM25 E3 ubiquitin ligase induces the Lys 63-linked ubiquitination of RIG-I, which is crucial for the cytosolic RIG-I signalling pathway to elicit host antiviral innate immunity.


Nature Cell Biology | 2006

Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG.

Chengyu Liang; Pinghui Feng; Bonsu Ku; Iris Dotan; Dan Canaani; Byung-Ha Oh; Jae U. Jung

Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1–PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled–coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1–PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1–Bcl-2–PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1–PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1–PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth.


Cell Host & Microbe | 2009

Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-I

Michaela U. Gack; Randy A. Albrecht; Tomohiko Urano; Kyung-Soo Inn; I-Chueh Huang; Elena Carnero; Michael Farzan; Satoshi Inoue; Jae U. Jung; Adolfo García-Sastre

The ubiquitin ligase TRIM25 mediates Lysine 63-linked ubiquitination of the N-terminal CARD domains of the viral RNA sensor RIG-I to facilitate type I interferon (IFN) production and antiviral immunity. Here, we report that the influenza A virus nonstructural protein 1 (NS1) specifically inhibits TRIM25-mediated RIG-I CARD ubiquitination, thereby suppressing RIG-I signal transduction. A novel domain in NS1 comprising E96/E97 residues mediates its interaction with the coiled-coil domain of TRIM25, thus blocking TRIM25 multimerization and RIG-I CARD domain ubiquitination. Furthermore, a recombinant influenza A virus expressing an E96A/E97A NS1 mutant is defective in blocking TRIM25-mediated antiviral IFN response and loses virulence in mice. Our findings reveal a mechanism by which influenza virus inhibits host IFN response and also emphasize the vital role of TRIM25 in modulating antiviral defenses.


Nature Cell Biology | 2008

Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking

Chengyu Liang; Jong-Soo Lee; Kyung-Soo Inn; Michaela U. Gack; Qinglin Li; Esteban Roberts; Isabelle Vergne; Vojo Deretic; Pinghui Feng; Chihiro Akazawa; Jae U. Jung

Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome–endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG–Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy — autophagosome formation and maturation — but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.


Journal of Virology | 2000

Downregulation of Major Histocompatibility Complex Class I Molecules by Kaposi's Sarcoma-Associated Herpesvirus K3 and K5 Proteins

Satoshi Ishido; Chunyang Wang; Bok-Soo Lee; George B. Cohen; Jae U. Jung

ABSTRACT The T-cell-mediated immune response plays a central role in the defense against intracellular pathogens. To avoid this immune response, viruses have evolved elaborate mechanisms that target and modulate many different aspects of the hosts immune system. A target common to many of these viruses is the major histocompatibility complex (MHC) class I molecules. Kaposis sarcoma-associated herpesvirus (KSHV) encodes K3 and K5 zinc finger membrane proteins which remove MHC class I molecules from the cell surface. K3 and K5 exhibit 40% amino acid identity to each other and localize primarily near the plasma membrane. While K3 and K5 dramatically downregulated class I molecules, they displayed different specificities in downregulation of HLA allotypes. K5 significantly downregulated HLA-A and -B and downregulated HLA-C only weakly, but not HLA-E, whereas K3 downregulated all four HLA allotypes. This selective downregulation of HLA allotypes by K5 was partly due to differences in amino acid sequences in their transmembrane regions. Biochemical analyses demonstrated that while K3 and K5 did not affect expression and intracellular transport of class I molecules, their expression induced rapid endocytosis of the molecules. These results demonstrate that KSHV has evolved a novel immune evasion mechanism by harboring similar but distinct genes, K3 and K5, which target MHC class I molecules in different ways.


The EMBO Journal | 1999

The Mex67p‐mediated nuclear mRNA export pathway is conserved from yeast to human

Jun Katahira; Strässer K; Alexandre V. Podtelejnikov; Mathias Mann; Jae U. Jung; Ed Hurt

Human TAP is an orthologue of the yeast mRNA export factor Mex67p. In mammalian cells, TAP has a preferential intranuclear localization, but can also be detected at the nuclear pores and shuttles between the nucleus and the cytoplasm. TAP directly associates with mRNA in vivo, as it can be UV‐crosslinked to poly(A)+ RNA in HeLa cells. Both the FG‐repeat domain of nucleoporin CAN/Nup214 and a novel human 15 kDa protein (p15) with homology to NTF2 (a nuclear transport factor which associates with RanGDP), directly bind to TAP. When green fluorescent protein (GFP)‐tagged TAP and p15 are expressed in yeast, they localize to the nuclear pores. Strikingly, co‐expression of human TAP and p15 restores growth of the otherwise lethal mex67::HIS3/mtr2::HIS3 double knockout strain. Thus, the human TAP–p15 complex can functionally replace the Mex67p–Mtr2p complex in yeast and thus performs a conserved role in nuclear mRNA export.


Nature Cell Biology | 2009

FLIP-mediated autophagy regulation in cell death control.

Jong-Soo Lee; Qinglin Li; June Yong Lee; Sun-Hwa Lee; Joseph H. Jeong; Hye-Ra Lee; Heesoon Chang; Fu-Chun Zhou; Shou-Jiang Gao; Chengyu Liang; Jae U. Jung

Autophagy is an active homeostatic degradation process for the removal or turnover of cytoplasmic components wherein the LC3 ubiquitin-like protein undergoes an Atg7 E1-like enzyme/Atg3 E2-like enzyme-mediated conjugation process to induce autophagosome biogenesis. Besides its cytoprotecive role, autophagy acts on cell death when it is abnormally upregulated. Thus, the autophagy pathway requires tight regulation to ensure that this degradative process is well balanced. Two death effector domains (DED1/2) containing cellular FLICE-like inhibitor protein (cFLIP) and viral FLIP (vFLIP) of Kaposis sarcoma-associated herpesvirus (KSHV), Herpesvirus saimiri (HVS), and Molluscum contagiosum virus (MCV) protect cells from apoptosis mediated by death receptors. Here, we report that cellular and viral FLIPs suppress autophagy by preventing Atg3 from binding and processing LC3. Consequently, FLIP expression effectively represses cell death with autophagy, as induced by rapamycin, an mTor inhibitor and an effective anti-tumour drug against KSHV-induced Kaposis sarcoma (KS) and primary effusion lymphoma (PEL). Remarkably, either a DED1 α2-helix ten amino-acid (α2) peptide or a DED2 α4-helix twelve amino-acid (α4) peptide of FLIP is individually sufficient for binding FLIP itself and Atg3, with the peptide interactions effectively suppressing Atg3–FLIP interaction without affecting Atg3-LC3 interaction, resulting in robust cell death with autophagy. Our study thus identifies a checkpoint of the autophagy pathway where cellular and viral FLIPs limit the Atg3-mediated step of LC3 conjugation to regulate autophagosome biogenesis. Furthermore, the FLIP-derived short peptides induce growth suppression and cell death with autophagy, representing biologically active molecules for potential anti-cancer therapies.


Cell | 1995

Identification of a nef allele that causes lymphocyte activation and acute disease in Macaque monkeys

Zhenjian Du; Sabine M. Lang; Vito G. Sasseville; Andrew A. Lackner; Petr O. Ilyinskii; M. D. Daniel; Jae U. Jung; Ronald C. Desrosiers

Residues 17 and 18 in nef of SIVmac239 were changed from RQ to YE to create a translated sequence of SRPSGDLYERLLRARGETYGRLLGEVEDGYSQSP from residues 10-43. The YXXL motifs in this context match very well with consensus sequences for SH2 binding domains and are similar to ones present in nef of the acutely lethal pathogen SIVpbj14. The YE variant of SIVmac239, unlike SIVmac239 but like SIVpbj14, replicated well in resting peripheral blood mononuclear cell cultures, caused extensive T lymphocyte activation, and produced an acute disease in rhesus and pigtailed monkeys characterized by severe diarrhea, rash, and extensive lymphoid proliferation in the gastrointestinal tract. The YEnef gene transformed NIH 3T3 cells in culture. Both 239nef and YEnef were found to associate with src in cotransfected COS cells, and both 60 kDa src and 34 kDa nef were phosphorylated at tyrosine in these cells. The extent of tyrosine phosphorylation of 239nef was considerably less than that of YEnef in these assays. These findings identify an important determinant of the SIVpbj14 phenotype, and they provide evidence of a role for nef in signal transduction and cellular activation.


Science | 2009

Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.

Sua Myong; Sheng Cui; Peter V. Cornish; Axel Kirchhofer; Michaela U. Gack; Jae U. Jung; Karl-Peter Hopfner; Taekjip Ha

Retinoic acid inducible–gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5′-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5′-triphosphate–powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5′-triphosphate, and the activation by 5′-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.


Immunity | 2000

Inhibition of Natural Killer Cell–Mediated Cytotoxicity by Kaposi's Sarcoma–Associated Herpesvirus K5 Protein

Satoshi Ishido; Joong-Kook Choi; Bok-Soo Lee; Chunyang Wang; MaryAnn DeMaria; R. Paul Johnson; George B. Cohen; Jae U. Jung

Kaposis sarcoma-associated herpesvirus (KSHV) K3 and K5 proteins dramatically downregulate MHC class I molecules. However, although MHC class I downregulation may protect KSHV-infected cells from cytotoxic T lymphocyte recognition, these cells become potential targets for natural killer (NK) cell-mediated lysis. We now show that K5 also downregulates ICAM-1 and B7-2, which are ligands for NK cell-mediated cytotoxicity receptors. As a consequence, K5 expression drastically inhibits NK cell-mediated cytotoxicity. Conversely, de novo expression of B7-2 and ICAM-1 resensitizes the K5-expressing cells to NK cell-mediated cytotoxicity. This is a novel viral immune evasion strategy where KSHV K5 achieves immune avoidance by downregulation of cellular ligands for NK cell-mediated cytotoxicity receptors.

Collaboration


Dive into the Jae U. Jung's collaboration.

Top Co-Authors

Avatar

Chengyu Liang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Pinghui Feng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kevin Brulois

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hye-Ra Lee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Shou-Jiang Gao

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Zsolt Toth

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge