Pinghui Feng
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pinghui Feng.
Nature Cell Biology | 2006
Chengyu Liang; Pinghui Feng; Bonsu Ku; Iris Dotan; Dan Canaani; Byung-Ha Oh; Jae U. Jung
Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1–PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled–coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1–PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1–Bcl-2–PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1–PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1–PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth.
Nature Cell Biology | 2008
Chengyu Liang; Jong-Soo Lee; Kyung-Soo Inn; Michaela U. Gack; Qinglin Li; Esteban Roberts; Isabelle Vergne; Vojo Deretic; Pinghui Feng; Chihiro Akazawa; Jae U. Jung
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome–endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG–Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy — autophagosome formation and maturation — but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.
Journal of Virology | 2002
David N. Everly; Pinghui Feng; I. Saira Mian; G. Sullivan Read
ABSTRACT During lytic infections, the virion host shutoff (Vhs) protein (UL41) of herpes simplex virus destabilizes both host and viral mRNAs. By accelerating the decay of all mRNAs, it helps redirect the cell from host to viral gene expression and facilitates the sequential expression of different classes of viral genes. While it is clear that Vhs induces mRNA degradation, it is uncertain whether it is itself an RNase or somehow activates a cellular enzyme. This question was addressed by using a combination of genetic and biochemical approaches. The Vhs homologues of alphaherpesviruses share sequence similarities with a family of mammalian, yeast, bacterial, and phage nucleases. To test the functional significance of these similarities, Vhs was mutated to alter residues corresponding to amino acids known to be critical to the nuclease activity of cellular homologues. In every instance, mutations that inactivated the nuclease activity of cellular homologues also abolished Vhs activity. Recent experiments showed that Vhs interacts with the cellular translation initiation factor eIF4H. In this study, the coexpression of Vhs and a glutathione S-transferase (GST)-eIF4H fusion protein in bacteria resulted in the formation of a complex of the proteins. The wild-type Vhs/GST-eIF4H complex was isolated and shown to have RNase activity. In contrast, Vhs mutations that altered key residues in the nuclease motif abolished the nuclease activity of the recombinant Vhs/GST-eIF4H complex. The results provide genetic and biochemical evidence that Vhs is an RNase, either alone or as a complex with eIF4H.
Journal of Virology | 2006
Young C. Shin; Hiroyuki Nakamura; Xiaozhen Liang; Pinghui Feng; Heesoon Chang; Timothy F. Kowalik; Jae U. Jung
ABSTRACT Infected cells recognize viral replication as a DNA damage stress and elicit the ataxia telangiectasia-mutated (ATM)/p53-mediated DNA damage response signal transduction pathway as part of the host surveillance mechanisms, which ultimately induces the irreversible cell cycle arrest and apoptosis. Viruses have evolved a variety of mechanisms to counteract this host intracellular innate immunity. Kaposis sarcoma-associated herpesvirus (KSHV) viral interferon regulatory factor 1 (vIRF1) interacts with the cellular p53 tumor suppressor through its central DNA binding domain, and this interaction inhibits transcriptional activation of p53. Here, we further demonstrate that KSHV vIRF1 downregulates the total p53 protein level by facilitating its proteasome-mediated degradation. Detailed biochemical study showed that vIRF1 interacted with cellular ATM kinase through its carboxyl-terminal transactivation domain and that this interaction blocked the activation of ATM kinase activity induced by DNA damage stress. As a consequence, vIRF1 expression greatly reduced the level of serine 15 phosphorylation of p53, resulting in an increase of p53 ubiquitination and thereby a decrease of its protein stability. These results indicate that KSHV vIRF1 comprehensively compromises an ATM/p53-mediated DNA damage response checkpoint by targeting both upstream ATM kinase and downstream p53 tumor suppressor, which might circumvent host growth surveillance and facilitate viral replication in infected cells.
Journal of Virology | 2002
Pinghui Feng; Junsoo Park; Bok-Soo Lee; Sun-Hwa Lee; Richard J. Bram; Jae U. Jung
ABSTRACT On viral infection, infected cells can become the target of host immune responses or can go through a programmed cell death process, called apoptosis, as a defense mechanism to limit the ability of the virus to replicate. To prevent this, viruses have evolved elaborate mechanisms to subvert the apoptotic process. Here, we report the identification of a novel antiapoptotic K7 protein of Kaposis sarcoma-associated herpesvirus (KSHV) which expresses during lytic replication. The KSHV K7 gene encodes a small mitochondrial membrane protein, and its expression efficiently inhibits apoptosis induced by a variety of apoptogenic agents. The yeast two-hybrid screen has demonstrated that K7 targets cellular calcium-modulating cyclophilin ligand (CAML), a protein that regulates the intracellular Ca2+ concentration. Similar to CAML, K7 expression significantly enhances the kinetics and amplitudes of the increase in intracellular Ca2+ concentration on apoptotic stimulus. Mutational analysis showed that K7 interaction with CAML is required for its function in the inhibition of apoptosis. This indicates that K7 targets cellular CAML to increase the cytosolic Ca2+ response, which consequently protects cells from mitochondrial damage and apoptosis. This is a novel viral antiapoptosis strategy where the KSHV mitochondrial K7 protein targets a cellular Ca2+-modulating protein to confer resistance to apoptosis, which allows completion of the viral lytic replication and, eventually, maintenance of persistent infection in infected host.
Journal of Virology | 2005
Pinghui Feng; David N. Everly; G. Sullivan Read
ABSTRACT During lytic infections, the virion host shutoff (Vhs) protein of herpes simplex virus accelerates the degradation of both host and viral mRNAs. In so doing, it helps redirect the cell from host to viral protein synthesis and facilitates the sequential expression of different viral genes. Vhs interacts with the cellular translation initiation factor eIF4H, and several point mutations that abolish its mRNA degradative activity also abrogate its ability to bind eIF4H. In addition, a complex containing bacterially expressed Vhs and a glutathione S-transferase (GST)-eIF4H fusion protein has RNase activity. eIF4H shares a region of sequence homology with eIF4B, and it appears to be functionally similar in that both stimulate the RNA helicase activity of eIF4A, a component of the mRNA cap-binding complex eIF4F. We show that eIF4H interacts physically with eIF4A in the yeast two-hybrid system and in GST pull-down assays and that the two proteins can be coimmunoprecipitated from mammalian cells. Vhs also interacts with eIF4A in GST pull-down and coimmunoprecipitation assays. Site-directed mutagenesis of Vhs and eIF4H revealed residues of each that are important for their mutual interaction, but not for their interaction with eIF4A. Thus, Vhs, eIF4H, and eIF4A comprise a group of proteins, each of which is able to interact directly with the other two. Whether they interact simultaneously as a tripartite complex or sequentially is unclear. The data suggest a mechanism for linking the degradation of an mRNA to its translation and for targeting Vhs to mRNAs and to regions of translation initiation.
Journal of Virology | 2005
Bok-Soo Lee; Sun-Hwa Lee; Pinghui Feng; Heesoon Chang; Nam-Hyuk Cho; Jae U. Jung
ABSTRACT Kaposis sarcoma (KS) is a multifocal angiogenic tumor and appears to be a hyperplastic disorder caused, in part, by local production of inflammatory cytokines. The K1 lymphocyte receptor-like protein of KS-associated herpesvirus (KSHV) efficiently transduces extracellular signals to elicit cellular activation events through its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). To further delineate K1-mediated signal transduction, we purified K1 signaling complexes and identified its cellular components. Upon stimulation, the K1 ITAM was efficiently tyrosine phosphorylated and subsequently interacted with cellular Src homology 2 (SH2)-containing signaling proteins Lyn, Syk, p85, PLCγ2, RasGAP, Vav, SH2 domain-containing protein tyrosine phosphatase 1/2, and Grab2 through its phosphorylated tyrosine residues. Mutational analysis demonstrated that each tyrosine residue of K1 ITAM contributed to the interactions with cellular signaling proteins in distinctive ways. Consequently, these interactions led to the marked augmentation of cellular signal transduction activity, evidenced by the increase of cellular tyrosine phosphorylation and intracellular calcium mobilization, the activation of NF-AT and AP-1 transcription factor activities, and the production of inflammatory cytokines. These results demonstrate that KSHV K1 effectively recruits a set of cellular SH2-containing signaling molecules to form the K1 signalosome, which elicits downstream signal transduction and induces inflammatory cytokine production.
Autophagy | 2007
Chengyu Liang; Pinghui Feng; Bonsu Ku; Byung-Ha Oh; Jae U. Jung
Autophagy has a well-documented role in the maintenance of homeostasis and the response to stressful environments and it is often deregulated in various human diseases including cancer. The regulation of the Beclin 1-PI3KC3 complex lipid kinase activity is a critical element in the autophagy signaling pathway. Previous studies1 have demonstrated that Beclin 1-PI3KC3-mediated autophagy is negatively regulated by a proto-oncogene Bcl-2. We have recently identified a novel coiled-coil UVRAG tumor suppressor candidate, which positively engages in Beclin 1-dependent autophagy. UVRAG interacts with Beclin 1, leading to activation of autophagy and thereof inhibition of tumorigenesis. This finding adds a new player to the emerging picture of the autophagy network, underscoring the importance of the coordinated activity between Bcl-2 and UVRAG in the regulation of Beclin 1-PI3KC3- mediated autophagy and tumor cell control. Addendum to: Autophagic and Tumor Suppressor Activity of a Novel Beclin 1-Binding Protein UVRAG Chengyu Liang, Pinghui Feng, Bonsu Ku, Iris Dotan, Dan Canaani, Byung-Ha Oh and Jae U. Jung Nature Cell Biol 2006; 8:688-99
Molecular and Cellular Biology | 2004
Pinghui Feng; Christopher W. Scott; Nam-Hyuk Cho; Hiroyuki Nakamura; Young-Hwa Chung; Mervyn J. Monteiro; Jae U. Jung
ABSTRACT Pathogens exploit host machinery to establish an environment that favors their propagation. Because of their pivotal roles in cellular physiology, protein degradation pathways are common targets for viral proteins. Protein-linking integrin-associated protein and cytoskeleton 1 (PLIC1), also called ubiquilin, contains an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain. PLIC1 is proposed to function as a regulator of the ubiquitination complex and proteasome machinery. Kaposis sarcoma-associated herpesvirus (KSHV) contains a small membrane protein, K7, that protects cells from apoptosis induced by various stimuli. We report here that cellular PLIC1 is a K7-interacting protein and that the central hydrophobic region of K7 and the carboxy-terminal UBA domain of PLIC1 are responsible for their interaction. Cellular PLIC1 formed a dimer and bound efficiently to polyubiquitinated proteins through its carboxy-terminal UBA domain, and this activity correlated with its ability to stabilize cellular IκB protein. In contrast, K7 interaction prevented PLIC1 from forming a dimer and binding to polyubiquitinated proteins, leading to the rapid degradation of IκB. Furthermore, K7 expression promoted efficient degradation of the p53 tumor suppressor, resulting in inhibition of p53-mediated apoptosis. These results indicate that KSHV K7 targets a regulator of the ubiquitin- and proteasome-mediated degradation machinery to deregulate cellular protein turnover, which potentially provides a favorable environment for viral reproduction.
Nature Cell Biology | 2013
Shanshan He; Duojiao Ni; Binyun Ma; Joo-Hyung Lee; Tian Zhang; Irene Ghozalli; Sara Dolatshahi Pirooz; Zhen Zhao; Nagakumar Bharatham; Baihong Li; Soohwan Oh; Wen-Hwa Lee; Yoshinori Takahashi; Hong-Gang Wang; Arlet Minassian; Pinghui Feng; Vojo Deretic; Rainer Pepperkok; Mitsuo Tagaya; Ho Sup Yoon; Chengyu Liang
Endoplasmic reticulum (ER)–Golgi membrane transport and autophagy are intersecting trafficking pathways that are tightly regulated and crucial for homeostasis, development and disease. Here, we identify UVRAG, a beclin-1-binding autophagic factor, as a phosphatidylinositol-3-phosphate (PtdIns(3)P)-binding protein that depends on PtdIns(3)P for its ER localization. We further show that UVRAG interacts with RINT-1, and acts as an integral component of the RINT-1-containing ER tethering complex, which couples phosphoinositide metabolism to COPI-vesicle tethering. Displacement or knockdown of UVRAG profoundly disrupted COPI cargo transfer to the ER and Golgi integrity. Intriguingly, autophagy caused the dissociation of UVRAG from the ER tether, which in turn worked in concert with the Bif-1–beclin-1–PI(3)KC3 complex to mobilize Atg9 translocation for autophagosome formation. These findings identify a regulatory mechanism that coordinates Golgi–ER retrograde and autophagy-related vesicular trafficking events through physical and functional interactions between UVRAG, phosphoinositide and their regulatory factors, thereby ensuring spatiotemporal fidelity of membrane trafficking and maintenance of organelle homeostasis.