Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Yeong Cheon is active.

Publication


Featured researches published by Jae Yeong Cheon.


Scientific Reports | 2013

Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction

Jae Yeong Cheon; Tae-Young Kim; YongMan Choi; Hu Young Jeong; Min Gyu Kim; Young Jin Sa; Jaesik Kim; Zonghoon Lee; Kyungjung Kwon; Osamu Terasaki; Gu-Gon Park; Radoslav R. Adzic; Sang Hoon Joo

The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity.


Journal of the American Chemical Society | 2013

Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal–Organic Frameworks

Tae Kyung Kim; Kyung Joo Lee; Jae Yeong Cheon; Jae Hwa Lee; Sang Hoon Joo; Hoi Ri Moon

Nanoporous metal oxide materials are ubiquitous in the material sciences because of their numerous potential applications in various areas, including adsorption, catalysis, energy conversion and storage, optoelectronics, and drug delivery. While synthetic strategies for the preparation of siliceous nanoporous materials are well-established, nonsiliceous metal oxide-based nanoporous materials still present challenges. Herein, we report a novel synthetic strategy that exploits a metal-organic framework (MOF)-driven, self-templated route toward nanoporous metal oxides via thermolysis under inert atmosphere. In this approach, an aliphatic ligand-based MOF is thermally converted to nanoporous metal oxides with highly nanocrystalline frameworks, in which aliphatic ligands act as the self-templates that are afterward evaporated to generate nanopores. We demonstrate this concept with hierarchically nanoporous magnesia (MgO) and ceria (CeO2), which have potential applicability for adsorption, catalysis, and energy storage. The pore size of these nanoporous metal oxides can be readily tuned by simple control of experimental parameters. Significantly, nanoporous MgO exhibits exceptional CO2 adsorption capacity (9.2 wt %) under conditions mimicking flue gas. This MOF-driven strategy can be expanded to other nanoporous monometallic and multimetallic oxides with a multitude of potential applications.


Journal of Materials Chemistry | 2013

Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts

Young Jin Sa; Kyungjung Kwon; Jae Yeong Cheon; Freddy Kleitz; Sang Hoon Joo

We report the use of noble metal-free ordered mesoporous Co3O4 spinels (meso-Co3O4), templated from KIT-6 mesoporous silica, as highly active and stable bifunctional electrocatalysts for both oxygen evolution and reduction reactions (OER and ORR, respectively). The meso-Co3O4 nanostructures showed high activity for OER in an alkaline medium (0.1 M KOH), which makes them comparable to the most active Ir/C catalyst and better than Co3O4 nanoparticles (NPs) and the Pt/C catalyst. Furthermore, meso-Co3O4 exhibited enhanced stability, compared to Co3O4 NPs. The enhanced activity and stability of meso-Co3O4 over Co3O4 NPs could be attributed to its high surface area and structural stability of the gyroid network structure in the meso-Co3O4 catalysts. The meso-Co3O4 nanostructures also showed promising activity for ORR and exhibited a methanol-tolerance superior to the Pt/C catalyst. The total overpotential of meso-Co3O4 for OER (at 10 mA cm−2) and ORR (at −3 mA cm−2) was 1.034 V, which is on a par with noble metal-based catalysts. This work demonstrates that directing metal oxides into mesostructures is a promising means of preparing highly active, stable, bifunctional oxygen electrocatalysts that can potentially replace expensive noble metal-based catalysts. This design strategy can be extended to other reactions relevant to energy conversion and storage applications.


Journal of the American Chemical Society | 2014

Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons

Jae Yeong Cheon; Jong Hun Kim; Jae Hyung Kim; Kalyan C. Goddeti; Jeong Young Park; Sang Hoon Joo

Nanostructured carbon materials doped with a variety of heteroatoms have shown promising electrocatalytic activity in the oxygen reduction reaction (ORR). However, understanding of the working principles that underpin the superior ORR activity observed with doped nanocarbons is still limited to predictions based on theoretical calculations. Herein, we demonstrate, for the first time, that the enhanced ORR activity in doped nanocarbons can be correlated with the variation in their nanoscale work function. A series of doped ordered mesoporous carbons (OMCs) were prepared using N, S, and O as dopants; the triple-doped, N,S,O-OMC displayed superior ORR activity and four-electron selectivity compared to the dual-doped (N,O-OMC and S,O-OMC) and the monodoped (O-OMC) OMCs. Significantly, the work functions of these heteroatom-doped OMCs, measured by Kelvin probe force microscopy, display a strong correlation with the activity and reaction kinetics for the ORR. This unprecedented experimental insight can be used to provide an explanation for the enhanced ORR activity of heteroatom-doped carbon materials.


Langmuir | 2012

Ordered Mesoporous Carbon Nitrides with Graphitic Frameworks as Metal-Free, Highly Durable, Methanol-Tolerant Oxygen Reduction Catalysts in an Acidic Medium

Kyungjung Kwon; Young Jin Sa; Jae Yeong Cheon; Sang Hoon Joo

Developments of high-performance cost-effective electrocatalyts that can replace Pt catalysts have been a central theme in polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). In this direction, nitrogen-doped carbon nanostructures free of metallic components have attracted particular attention. Here we show that directing graphitic carbon nitride frameworks into mesoporous architecture can generate a highly promising metal-free electrocatalyst for an oxygen reduction reaction (ORR) in an acidic medium. The ordered mesoporous carbon nitride (OMCN) was synthesized with a nanocasting strategy using ordered mesoporous silica as a template. A variety of characterizations revealed that the OMCN is constructed with graphitic carbon nitride frameworks and ordered arrays of uniform mesopores. The OMCN showed significantly enhanced electrocatalytic activity for ORR compared to bulk carbon nitride and ordered mesoporous carbon in terms of the current density and onset potential. A high surface area and an increased density of catalytically active nitrogen groups in the OMCN appear to contribute concomitantly to the enhanced performance of the OMCN. Furthermore, the OMCN exhibited superior durability and methanol tolerance to a Pt/C catalyst, suggesting its widespread utilization as an electrocatalyst for PEMFCs and DMFCs.


ACS Nano | 2015

Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effects in the Hydrogen Evolution Reaction

Bora Seo; Gwan Yeong Jung; Young Jin Sa; Hu Young Jeong; Jae Yeong Cheon; Jeong Hyeon Lee; Ho Young Kim; Jin Chul Kim; Hyeon Suk Shin; Sang Kyu Kwak; Sang Hoon Joo

Metal sulfide-based nanostructured materials have emerged as promising catalysts for hydrogen evolution reaction (HER), and significant progress has been achieved in enhancing their activity and durability for the HER. The understanding of nanoscale size-dependent catalytic activities can suggest critical information regarding catalytic reactivity, providing the scientific basis for the design of advanced catalysts. However, nanoscale size effects in metal sulfide-based HER catalysts have not yet been established fully, due to the synthetic difficulty in precisely size-controlled metal sulfide nanoparticles. Here we report the preparation of molybdenum sulfide (MoS2) nanoparticles with monolayer precision from one to four layers with the nearly constant basal plane size of 5 nm, and their size-dependent catalytic activity in the HER. Using density functional theory (DFT) calculations, we identified the most favorable single-, double-, and triple-layer MoS2 model structures for the HER, and calculated elementary step energetics of the HER over these three model structures. Combining HER activity measurements and the DFT calculation results, we establish that the turnover frequency of MoS2 nanoparticles in the HER increases in a quasi-linear manner with decreased layer numbers. Cobalt-promoted MoS2 nanoparticles also exhibited similar HER activity trend. We attribute the higher HER activity of smaller metal sulfide nanoparticles to the higher degree of oxidation, higher Mo-S coordination number, formation of the 1T phase, and lower activation energy required to overcome transition state. This insight into the nanoscale size-dependent HER activity trend will facilitate the design of advanced HER catalysts as well as other hydrotreating catalysts.


ACS Nano | 2015

Skeletal Octahedral Nanoframe with Cartesian Coordinates via Geometrically Precise Nanoscale Phase Segregation in a Pt@Ni Core–Shell Nanocrystal

Aram Oh; Hionsuck Baik; Dong Shin Choi; Jae Yeong Cheon; Byeongyoon Kim; Heejin Kim; Seong Jung Kwon; Sang Hoon Joo; Yousung Jung; Kwangyeol Lee

Catalytic properties of nanoparticles can be significantly enhanced by controlling nanoscale alloying and its structure. In this work, by using a facet-controlled Pt@Ni core-shell octahedron nanoparticle, we show that the nanoscale phase segregation can have directionality and be geometrically controlled to produce a Ni octahedron that is penetrated by Pt atoms along three orthogonal Cartesian axes and is coated by Pt atoms along its edges. This peculiar anisotropic diffusion of Pt core atoms along the ⟨100⟩ vertex, and then toward the ⟨110⟩ edges, is explained via the minimum strain energy for Ni-Ni pair interactions. The selective removal of the Ni-rich phase by etching then results in structurally fortified Pt-rich skeletal PtNi alloy framework nanostructures. Electrochemical evaluation of this hollow nanoframe suggests that the oxygen reduction reaction (ORR) activity is greatly improved compared to conventional Pt catalysts.


Journal of Materials Chemistry | 2013

Ordered mesoporous carbon–carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells

Jae Yeong Cheon; Chi-Yeong Ahn; Dae Jong You; Chanho Pak; Seung Hyun Hur; Junbom Kim; Sang Hoon Joo

Ordered mesoporous carbon–carbon nanotube (OMC–CNT) nanocomposites were prepared and used as catalyst supports for polymer electrolyte fuel cells. The OMC–CNT composites were synthesized via a nanocasting method that used ordered mesoporous silica as a template and Ni–phthalocyanine as a carbon source. For comparison, sucrose and phthalocyanine were used to generate two other OMCs, OMC(Suc) and OMC(Pc), respectively. All three carbons exhibited hexagonally ordered mesostructures and uniform mesopores. Among the three carbons the OMC–CNT nanocomposites showed the highest electrical conductivity, which was due to the nature of their graphitic framework as well as their lower interfacial resistance. The three carbons were then used as fuel cell catalyst supports. It was found that highly dispersed Pt nanoparticles (ca. ∼1.5 nm in size) could be dispersed on the OMCs via a simple impregnation–reduction method. The activity and kinetics of the oxygen reduction reaction (ORR), measured by the rotating ring-disk electrode technique revealed that the ORR over the Pt/OMC catalysts followed a four-electron pathway. Among the three Pt/OMC catalysts, the Pt/OMC–CNT catalyst resulted in the highest ORR activity, and after an accelerated durability test the differences in the ORR activities of the three catalysts became more pronounced. In single cell tests, the Pt/OMC–CNT-based cathode showed a current density markedly greater than those of the other two cathodes after a high-voltage degradation test. These results were supported by the fact that the Pt/OMC–CNT-based cathode had the lowest resistance, which was probed by electrochemical impedance spectroscopy (EIS). The results of the single cell tests as well as those of the EIS-based measurements indicate that the rigidly interconnected structure of the OMC–CNT as well as their highly conductive frameworks are concomitantly responsible for the OMC–CNT nanocomposites exhibiting higher current density and durability than the other two carbons.


Chemical Communications | 2011

Ultrathin titania coating for high-temperature stable SiO2/Pt nanocatalysts

A. Satyanarayana Reddy; Sunmi Kim; Hu Young Jeong; Sookyoung Jin; Kamran Qadir; Kyoungmin Jung; Chan Ho Jung; Jung Yeul Yun; Jae Yeong Cheon; Jun-Mo Yang; Sang Hoon Joo; Osamu Terasaki; Jeong Young Park

The facile synthesis of silica supported platinum nanoparticles with ultrathin titania coating to enhance metal-support interactions suitable for high temperature reactions is reported, as thermal and structure stability of metal nanoparticles is important for catalytic reactions.


Nanoscale Research Letters | 2012

In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

Jin Yeong Kim; Mingshi Jin; Kyung Joo Lee; Jae Yeong Cheon; Sang Hoon Joo; Ji Man Kim; Hoi Ri Moon

The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization.

Collaboration


Dive into the Jae Yeong Cheon's collaboration.

Top Co-Authors

Avatar

Sang Hoon Joo

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hu Young Jeong

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Young Jin Sa

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Hyung Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hoi Ri Moon

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyeon Suk Shin

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Min Gyu Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge