Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaehyun Cho is active.

Publication


Featured researches published by Jaehyun Cho.


Journal of Contaminant Hydrology | 2008

Changes in contaminant mass discharge from DNAPL source mass depletion: Evaluation at two field sites

Michael C. Brooks; A. Lynn Wood; Michael D. Annable; Kirk Hatfield; Jaehyun Cho; Charles Holbert; P. Suresh C. Rao; Carl G. Enfield; Kira Lynch; Richard E. Smith

Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.


Journal of Contaminant Hydrology | 2008

Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution.

Andrew J. Kaye; Jaehyun Cho; Nandita B. Basu; Xiaosong Chen; Michael D. Annable; James W. Jawitz

This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction (R(j)) vs. mass reduction (R(m)) relationships (R(j)(R(m))): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the R(j)(R(m)) relationship. All of the single-flushing experiments exhibited similar R(j)(R(m)) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The R(j)(R(m)) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less R(j) for a given R(m). UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict R(j)(R(m)) relationships for non-uniformly distributed NAPL sources.


Water Research | 2011

Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site

Valerie Stucker; James F. Ranville; Mark A. Newman; Aaron D. Peacock; Jaehyun Cho; Kirk Hatfield

Laboratory tests and a field validation experiment were performed to evaluate anion exchange resins for uranium sorption and desorption in order to develop a uranium passive flux meter (PFM). The mass of uranium sorbed to the resin and corresponding masses of alcohol tracers eluted over the duration of groundwater installation are then used to determine the groundwater and uranium contaminant fluxes. Laboratory based batch experiments were performed using Purolite A500, Dowex 21K and 21K XLT, Lewatit S6328 A resins and silver impregnated activated carbon to examine uranium sorption and extraction for each material. The Dowex resins had the highest uranium sorption, followed by Lewatit, Purolite and the activated carbon. Recoveries from all ion exchange resins were in the range of 94-99% for aqueous uranium in the environmentally relevant concentration range studied (0.01-200 ppb). Due to the lower price and well-characterized tracer capacity, Lewatit S6328 A was used for field-testing of PFMs at the DOE UMTRA site in Rifle, CO. The effect on the flux measurements of extractant (nitric acid)/resin ratio, and uranium loading were investigated. Higher cumulative uranium fluxes (as seen with concentrations>1 ug U/gram resin) yielded more homogeneous resin samples versus lower cumulative fluxes (<1 ug U/gram resin), which caused the PFM to have areas of localized concentration of uranium. Resin homogenization and larger volume extractions yield reproducible results for all levels of uranium fluxes. Although PFM design can be improved to measure flux and groundwater flow direction, the current methodology can be applied to uranium transport studies.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2009

Laboratory evaluation of surfactant-enhanced air sparging for perchloroethene source mass depletion from sand.

Heonki Kim; Michael D. Annable; P. S. C. Rao; Jaehyun Cho

Surfactant-enhanced air sparging (SEAS) was evaluated in this laboratory-scale study to assess: (i) the removal efficiency of volatile contaminant from an aquifer model contrasted to conventional air sparging; and (ii) the effect of mass removal of dense non-aqueous phase liquid (DNAPL) during air sparging on the changes in aqueous flux of dissolved DNAPL. We conducted sparging experiments to remove perchloroethene (PCE) sources from laboratory flow chambers packed with sand. PCE was emplaced in rectangular zones at three locations within the flow chamber. The resident water was supplemented with the anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), to reduce the surface tension of water, and then sparged with nitrogen gas at a constant flow rate of 0.12 L/min. It was found that SEAS was significantly more efficient than conventional air sparging for removing PCE. For SEAS, about 78% and 75% of total PCE mass was depleted from the flow chamber at a surface tension of 52.2 dynes/cm (350 mg/L SDBS) and 63.1 dynes/cm (150 mg/L SDBS), respectively, whereas only 38% was removed at 72.5 dyne/cm (no SDBS added). Before and after sparging, PCE mass flux in the aqueous phase during steady water flow through the chamber was measured in the flow chambers. Post-SEAS PCE fluxes were reduced, but not in direct proportion to the reduction in PCE mass.


Journal of Contaminant Hydrology | 2014

Enhanced aqueous dissolution of a DNAPL source to characterize the source strength function

Fang Wang; Michael D. Annable; Charles E. Schaefer; Timothy D. Ault; Jaehyun Cho; James W. Jawitz

Simplified analytical solutions, developed as source strength functions (SSFs), are capable of describing the temporal dissolution of nonaqueous phase liquids in groundwater, which is useful for predicting source longevity and can serve as a guide for remedial activities. Here, SSF parameters were estimated by fitting enhanced aqueous dissolution data from a flow cell consisting of three injection and four extraction wells to analytical dissolution models (power law model (PLM) and equilibrium streamtube model (EST)) at a trichloroethene (TCE) contaminated site, Alameda Point, California. Both the PLM and the EST model were able to characterize the observed aqueous TCE dissolution during enhanced water flooding. Additional field activities conducted at the site included soil core collection, a recirculated partitioning tracer test, passive flux meter transects, and push-pull tracer tests. The additional site characterization data were used to independently estimate the observed SSF parameters using information such as the TCE mass, distribution and porous media heterogeneity. The exponential decay model (a subset of the PLM) accurately predicted the enhanced dissolution, likely because the site was significantly aged (most of the mass in the plume rather than in the source zone) or middle stage, and the mass in the source zone could be approximately estimated. The EST tracer-based model, when combined with data from the recirculated partitioning tracer test, soil cores, and the push-pull tracer test, was capable of accurately predicting the observed aqueous dissolution. The mass in the source zone and the fraction of contaminated flowpaths were the most important site characteristics, requiring the greatest accuracy to predict aqueous dissolution. Establishing steady state dissolution was essential to provide a more accurate estimate of the fraction contaminated and high resolution data from soil cores in the source zone were needed to estimate the mass present.


Water Resources Research | 2016

A new device for characterizing fracture networks and measuring groundwater and contaminant fluxes in fractured rock aquifers

Harald Klammler; Kirk Hatfield; Mark A. Newman; Jaehyun Cho; Michael D. Annable; Beth L. Parker; John A. Cherry; Irina V. Perminova

This paper presents the fundamental theory and laboratory test results on a new device that is deployed in boreholes in fractured rock aquifers to characterize vertical distributions of water and contaminant fluxes, aquifer hydraulic properties, and fracture network properties (e.g., active fracture density and orientation). The device, a fractured rock passive flux meter (FRPFM), consists of an inflatable core assembled with upper and lower packers that isolate the zone of interest from vertical gradients within the borehole. The outer layer of the core consists of an elastic fabric mesh equilibrated with a visible dye which is used to provide visual indications of active fractures and measures of fracture location, orientation, groundwater flux, and the direction of that flux. Beneath the outer layer is a permeable sorbent that is preloaded with known amounts of water soluble tracers which are eluted at rates proportional to groundwater flow. This sorbent also captures target contaminants present in intercepted groundwater. The mass of contaminant sorbed is used to quantify cumulative contaminant flux; whereas, the mass fractions of resident tracers lost are used to provide measures of water flux. In this paper, the FRPFM is bench tested over a range of fracture velocities (2–20 m/day) using a single fracture flow apparatus (fracture aperture = 0.5 mm). Test results show a discoloration in visible dye corresponding to the location of the active fracture. The geometry of the discoloration can be used to discern fracture orientation as well as direction and magnitude of flow in the fracture. Average contaminant fluxes were measured within 16% and water fluxes within 25% of known imposed fluxes.


Journal of Contaminant Hydrology | 2018

Source strength functions from long-term monitoring data and spatially distributed mass discharge measurements

Michael C. Brooks; A. Lynn Wood; Jaehyun Cho; Christine A.P. Williams; William Brandon; Michael D. Annable

Source strength functions (SSF), defined as contaminant mass discharge or flux-averaged concentration from dense nonaqueous phase liquid (DNAPL) source zones as a function of time, provide a quantitative model of DNAPL source-zone behavior. Such information is useful for calibration of screening-level models to assist with site management decisions. We investigate the use of historic data collected during long-term monitoring (LTM) activities at a site in Rhode Island to predict the SSF based on temporal mass discharge measurements at a fixed location, as well as SSF estimation using mass discharge measurements at a fixed time from three spatially distributed control planes. Mass discharge based on LTM data decreased from ~300 g/day in 1996 to ~70 g/day in 2012 at a control plane downgradient of the suspected DNAPL source zone, and indicates an overall decline of ~80% in 16 years. These measurements were compared to current mass discharge measurements across three spatially distributed control planes. Results indicate that mass discharge increased in the downgradient direction, and was ~6 g/day, ~37 g/day, and ~400 g/day at near, intermediate, and far distances from the suspected source zone, respectively. This behavior was expected given the decreasing trend observed in the LTM data at a fixed location. These two data sets were compared using travel time as a means to plot the data sets on a common axis. The similarity between the two data sets gives greater confidence to the use of this combined data set for site-specific SSF estimation relative to either the sole use of LTM or spatially distributed data sets.


Journal of Contaminant Hydrology | 2004

A direct passive method for measuring water and contaminant fluxes in porous media

Kirk Hatfield; Michael D. Annable; Jaehyun Cho; P. S. C. Rao; Harald Klammler


Environmental Science & Technology | 2005

Field-Scale Evaluation of the Passive Flux Meter for Simultaneous Measurement of Groundwater and Contaminant Fluxes

Michael D. Annable; Kirk Hatfield; Jaehyun Cho; Harald Klammler; Beth L. Parker; John A. Cherry; P. Suresh C. Rao


Chemosphere | 2005

Characterization of pore scale NAPL morphology in homogeneous sands as a function of grain size and NAPL dissolution.

Jaehyun Cho; Michael D. Annable

Collaboration


Dive into the Jaehyun Cho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge