Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaesang Lee is active.

Publication


Featured researches published by Jaesang Lee.


ACS Nano | 2010

Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations

Jaesang Lee; Shaily Mahendra; Pedro J. J. Alvarez

The extraordinary chemical and physical properties of materials at the nanometer scale enable novel applications ranging from structural strength enhancement and energy conservation to antimicrobial properties and self-cleaning surfaces. Consequently, manufactured nanomaterials (MNMs) and nanocomposites are being considered for various uses in the construction and related infrastructure industries. To achieve environmentally responsible nanotechnology in construction, it is important to consider the lifecycle impacts of MNMs on the health of construction workers and dwellers, as well as unintended environmental effects at all stages of manufacturing, construction, use, demolition, and disposal. Here, we review state-of-the-art applications of MNMs that improve conventional construction materials, suggest likely environmental release scenarios, and summarize potential adverse biological and toxicological effects and their mitigation. Aligned with multidisciplinary assessment of the environmental implications of emerging technologies, this review seeks to promote awareness of potential benefits of MNMs in construction and stimulate the development of guidelines to regulate their use and disposal to mitigate potential adverse effects on human and environmental health.


Environmental Science & Technology | 2012

Selective Oxidative Degradation of Organic Pollutants by Singlet Oxygen-Mediated Photosensitization: Tin Porphyrin versus C60 Aminofullerene Systems

Heechan Kim; Wooyul Kim; Yuri Mackeyev; Gi Seon Lee; Hee Joon Kim; Takashi Tachikawa; Seok Won Hong; Sang Hyup Lee; Jungbae Kim; Lon J. Wilson; Tetsuro Majima; Pedro J. J. Alvarez; Wonyong Choi; Jaesang Lee

This study evaluates the potential application of tin porphyrin- and C(60) aminofullerene-derivatized silica (SnP/silica and aminoC(60)/silica) as (1)O(2) generating systems for photochemical degradation of organic pollutants. Photosensitized (1)O(2) production with SnP/silica, which was faster than with aminoC(60)/silica, effectively oxidized a variety of pharmaceuticals. Significant degradation of pharmaceuticals in the presence of the 400-nm UV cutoff filter corroborated visible light activation of both photosensitizers. Whereas the efficacy of aminoC(60)/silica for (1)O(2) production drastically decreased under irradiation with λ > 550 nm, Q-band absorption caused negligible loss of the photosensitizing activity of SnP/silica in the long wavelength region. Faster destruction of phenolates by SnP/silica and aminoC(60)/silica under alkaline pH conditions further implicated (1)O(2) involvement in the oxidative degradation. Direct charge transfer mediated by SnP, which was inferred from nanosecond laser flash photolysis, induced significant degradation of neutral phenols under high power light irradiation. Self-sensitized destruction caused gradual activity loss of SnP/silica in reuse tests unlike aminoC(60)/silica. The kinetic comparison of SnP/silica and TiO(2) photocatalyst in real wastewater effluents showed that photosensitized singlet oxygenation of pharmaceuticals was still efficiently achieved in the presence of background organic matters, while significant interference was observed for photocatalyzed oxidation involving non-selective OH radical.


Chemical Communications | 2008

Synergic effect of simultaneous fluorination and platinization of TiO2 surface on anoxic photocatalytic degradation of organic compounds

Jungwon Kim; Jaesang Lee; Wonyong Choi

Simultaneously surface fluorinated and platinized TiO2 (F-TiO2/Pt) exhibits a novel photocatalytic activity for the anoxic degradation of organic compounds, which is attributed to the unique synergic effect of surface fluorination and platinization on the photo-induced charge transfer process.


Chemosphere | 2012

Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic

Jinyoung Chun; Hongshin Lee; Sang Hyup Lee; Seok Won Hong; Jaesang Lee; Changha Lee; Jinwoo Lee

A magnetite-loaded mesocellular carbonaceous material, Fe(3)O(4)/MSU-F-C, exhibited superior activity as both a Fenton catalyst and an adsorbent for removal of phenol and arsenic, and strong magnetic property rendering it separable by simply applying magnetic field. In the presence of hydrogen peroxide, the catalytic process by Fe(3)O(4)/MSU-F-C completely oxidized phenol and As(III) under the conditions where commercial iron oxides showed negligible effects. Notably, the decomposition of H(2)O(2) by Fe(3)O(4)/MSU-F-C was not faster than those by commercial iron oxides, indicating that hydroxyl radical produced via the catalytic process by Fe(3)O(4)/MSU-F-C was used more efficiently for the oxidation of target contaminants compared to the other iron oxides. The homogeneous Fenton reaction by the dissolved iron species eluted from Fe(3)O(4)/MSU-F-C was insignificant. At relatively high doses of Fe(3)O(4)/MSU-F-C, total concentration of arsenic decreased to a significant extent due to the adsorption of arsenic on the catalyst surface. The removal of arsenic by adsorption was found to proceed via preoxidation of As(III) into As(V) and the subsequent adsorption of As(V) onto the catalyst.


Environmental Science & Technology | 2011

Photosensitized Oxidation of Emerging Organic Pollutants by Tetrakis C60 Aminofullerene-Derivatized Silica under Visible Light Irradiation

Jaesang Lee; Seok Won Hong; Yuri Mackeyev; Changha Lee; Eunhyea Chung; Lon J. Wilson; Jae-Hong Kim; Pedro J. J. Alvarez

We recently reported that C(60) aminofullerenes immobilized on silica support (aminoC(60)/silica) efficiently produce singlet oxygen ((1)O(2)) and inactivate virus and bacteria under visible light irradiation. (1) We herein evaluate this new photocatalyst for oxidative degradation of 11 emerging organic contaminants, including pharmaceuticals such as acetaminophen, carbamazepine, cimetidine, propranolol, ranitidine, sulfisoxazole, and trimethoprim, and endocrine disruptors such as bisphenol A and pentachlorophenol. Tetrakis aminoC(60)/silica degraded pharmaceuticals under visible light irradiation faster than common semiconductor photocatalysts such as platinized WO(3) and carbon-doped TiO(2). Furthermore, aminoC(60)/silica exhibited high target-specificity without significant interference by natural organic matter. AminoC(60)/silica was more efficient than unsupported (water-suspended) C(60) aminofullerene. This was attributed to kinetically enhanced (1)O(2) production after immobilization, which reduces agglomeration of the photocatalyst, and to adsorption of pharmaceuticals onto the silica support, which increases exposure to (1)O(2) near photocatalytic sites. Removal efficiency increased with pH for contaminants with a phenolic moiety, such as bisphenol A and acetaminophen, because the electron-rich phenolates that form at alkaline pH are more vulnerable to singlet oxygenation.


Environmental Science & Technology | 2010

C60 Aminofullerene Immobilized on Silica as a Visible-Light-Activated Photocatalyst

Jaesang Lee; Yuri Mackeyev; Min Cho; Lon J. Wilson; Jae-Hong Kim; Pedro J. J. Alvarez

A new strategy is described to immobilize photoactive C(60) aminofullerene on silica gel (3-(2-succinic anhydride)propyl functionalized silica), thus enabling facile separation of the photocatalyst for recycling and repeated use. An organic linker moiety containing an amide group was used to anchor C(60) aminofullerene to the functionalized silica support. The linker moiety prevents aqueous C(60) aggregation/agglomeration (shown by TEM images), resulting in a remarkable enhancement of photochemical (1)O(2) production under visible light irradiation. With no loss in efficacy of (1)O(2) production plus insignificant chemical modification of the aminoC(60)/silica photocatalyst after multiple cycling, the system offers a promising new visible-light-activated photocatalyst. Under visible-light irradiation, the aminoC(60)/silica photocatalyst is capable of effective and kinetically enhanced oxidation of Ranitidine and Cimetidine (pharmaceutical pollutants) and inactivation of MS-2 bacteriophage compared to aqueous solutions of the C(60) aminofullerene alone. Thus, this photocatalyst could enable water treatment in less developed areas by alleviating dependence on major infrastructure, including the need for electricity.


Chemosphere | 2012

Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans

Yun Jeong Cha; Jaesang Lee; Shin Sik Choi

Although a number of manufactured nanoparticles are applied for the medical and clinical purposes, the understanding of interaction between nanomaterials and biological systems are still insufficient. Using nematode Caenorhabditis elegans model organism, we here investigated the in vivo toxicity or safety of hydroxylated fullerene nanoparticles known to detoxify anti-cancer drug-induced oxidative damages in mammals. The survival ratio of C. elegans rapidly decreased by the uptake of nanoparticles from their L4 larval stage with resulting in shortened lifespan (20 d). Both reproduction rate and body size of C. elegans were also reduced after exposure to 100 μg mL(-1) of fullerol. We found ectopic cell corpses caused by apoptotic cell death in the adult worms grown with fullerol nanoparticles. By the mutation of core pro-apoptotic regulator genes, ced-3 and ced-4, these nanoparticle-induced cell death were significantly suppressed, and the viability of animals consequently increased despite of nanoparticle uptake. The apoptosis-mediated toxicity of nanoparticles particularly led to the disorder of digestion system in the animals containing a large number of undigested foods in their intestine. These results demonstrated that the water-soluble fullerol nanoparticles widely used in medicinal applications have a potential for inducing apoptotic cell death in multicellular organisms despite of their antioxidative detoxifying property.


Environmental Science & Technology | 2010

Visible light sensitized inactivation of MS-2 bacteriophage by a cationic amine-functionalized C60 derivative.

Min Cho; Jaesang Lee; Yuri Mackeyev; Lon J. Wilson; Pedro J. J. Alvarez; Joseph B. Hughes; Jae-Hong Kim

Recently, we reported the successful synthesis of various hexakis C60 derivatives (i.e., C60 with six functional groups containing NH3+-, CO2H-, or OH-terminals) with enhanced stability in water for aqueous phase application (Lee et al., Environ. Sci. Technol. 2009, 43, pp 6604-6610). Among these newly synthesized C60 derivatives, the cationic hexakis C60 derivative with amine functionality, C60(CR2)6 (R=CO2(CH2)2NH3+CF3CO2-), was found to exhibit remarkable efficiency to inactivate Escherichia coli and MS-2 bacteriophage under UVA irradiation. Herein, we report that this amine-functionalized C60 derivative is also photoactive in response to visible light from both commercial fluorescence lamps and sunlight. Efficient production of 1O2, facile reaction of 1O2 with proteins in MS-2 phage capsid and electrostatic attraction between positively charged C60 derivative and negatively charged MS-2 phage collectively contributed to high efficiency of MS-2 phage inactivation in this photocatalytic disinfection system. The rate of 1O2 production was evaluated using a probe compound, furfuryl alcohol, and 1O2 CT (the product of 1O2 concentration and exposure time) required to achieve a target level of virus inactivation was quantitatively analyzed. The unique visible-light sensitized virucidal property makes this C60 derivative highly desirable for the development of sustainable disinfection strategies that do not require continuous chemical addition nor an external energy source other than ambient light.


Environmental Science & Technology | 2016

Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds

Yong Yoon Ahn; Eun Tae Yun; Ji Won Seo; Changha Lee; Sang Hoon Kim; Jae-Hong Kim; Jaesang Lee

This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical.


Environmental Science & Technology | 2014

Arsenite Oxidation Initiated by the UV Photolysis of Nitrite and Nitrate

Dong Hyo Kim; Jaesang Lee; Jungho Ryu; Ki-Tae Kim; Wonyong Choi

This study demonstrates that the production of reactive oxidizing species (e.g., hydroxyl radical (•OH)) during the photolysis of nitrite (NO2(-)) or nitrate (NO3(-)) leads to the oxidative conversion of arsenite (As(III)) to arsenate (As(V)). While the direct UV photolytic oxidation of As(III) was absent, nitrite (20 or 200 μM) addition markedly accelerated the oxidation of As(III) under UV irradiation (λ > 295 nm), which implies a role of NO2(-) as a photosensitizer for As(III) oxidation. Nitrate-mediated photooxidation of As(III) revealed an initial lag phase during which NO3(-) is converted into NO2(-). UV-Photosensitized oxidation of As(III) was kinetically enhanced under acidic pH condition where nitrous acid (HNO2) with a high quantum yield for •OH production is a predominant form of nitrite. On the other hand, alkaline pH that favors the photoinduced transformation of NO3(-) to NO2(-) significantly facilitated the catalytic reduction/oxidation cycling, which enabled the complete oxidation of As(III) at the condition of [As(III)]/[NO2(-)] ≫ 1 and markedly accelerated NO3(-)-sensitized oxidation of As(III). The presence of O2 and N2O as electron scavengers enhanced the photochemical dissociation of NO2(-) via intermolecular electron transfer, initiating the oxidative As(III) conversion route probably involving NO2• and superoxide radical anion (O2•(-)) as alternative oxidants. The outdoor experiment demonstrated the capability of NO2(-) for the photosensitized production of oxidizing species and the subsequent oxidation of As(III) into As(V) under solar irradiation.

Collaboration


Dive into the Jaesang Lee's collaboration.

Top Co-Authors

Avatar

Wonyong Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Changha Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seok Won Hong

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongshin Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seunghak Lee

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge