Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wonyong Choi is active.

Publication


Featured researches published by Wonyong Choi.


Journal of Hazardous Materials | 2014

Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes

Alok Diwakar Bokare; Wonyong Choi

Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications.


Environmental Science & Technology | 2010

Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light.

Jungwon Kim; Chul Wee Lee; Wonyong Choi

This study aims to understand the visible light photocatalytic activities of platinized WO3 (Pt/WO3) on the degradation of aquatic pollutants and the role of main photooxidants. The presence of Pt on WO3 is known to facilitate the multielectron reduction of O2, which enables O2 to serve as an electron acceptor despite the insufficient reduction potential of the conduction band electrons (in WO3) for the one-electron reduction of O2. The concurrent oxidative reactions occurring on WO3 were markedly enhanced in the presence of Pt and accompanied the production of OH radicals under visible light, which was confirmed by both a fluorescence method (using a chemical trap) and a spin trap method. The generation of OH radicals mainly comes from the reductive decomposition of H2O2 that is produced in situ from the reduction of O2 on Pt/WO3. The rate of in situ production of H2O2 under visible light was significantly faster with Pt/WO3 than WO3. Six substrates that were tested for the visible light (lambda>420 nm) induced degradation on Pt/WO3 included dichloroacetate (DCA), 4-chlorophenol (4-CP), tetramethylammonium (TMA), arsenite (As(III)), methylene blue (MB), and acid orange 7 (AO7). The degradation (or conversion) of all six substrates was successfully achieved with Pt/WO3 and the role of OH radicals in Pt/WO3 photocatalysis seemed to be different depending on the kind of substrate. In the presence of tert-butyl alcohol (TBA: OH radical scavenger), the photocatalytic degradation was markedly reduced for 4-CP or completely inhibited for DCA and TMA whereas that of As(III), MB, and AO7 was little affected. Pt/WO3 photocatalyst that oxidizes various substrates under visible light with a sufficient photostability can be applied for solar water treatment.


Applied and Environmental Microbiology | 2005

Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO2 Photocatalytic Disinfection

Min Cho; Hyen-Mi Chung; Wonyong Choi; Jeyong Yoon

ABSTRACT Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO2 photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (·OH), which is generated on the surface of UV-illuminated TiO2, plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H2O2 and O2·−, etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe2+, were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O2·− and H2O2, according to the present results.


Journal of Materials Chemistry | 2008

Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production

Hyunwoong Park; Wonyong Choi; Michael R. Hoffmann

A variety of combinations of CdS, TiO2, and Pt in preparing the hybrid catalysts were studied for hydrogen production under visible light ( > 420 nm) irradiation. The preparation method sensitively influenced the activity of the ternary hybrid catalysts. The formation of the potential gradient at the interface between CdS and TiO2 is necessary in achieving the efficient charge separation and transfer and how the platinum as a cocatalyst is loaded onto the CdS/TiO2 hybrid catalysts determines the overall hydrogen production efficiency. The common method of photoplatinization of CdS/TiO2 hybrid [Pt-(CdS/TiO2)] was much less efficient than the present method in which Pt was photodeposited on bare TiO2, which was followed by the deposition of CdS [CdS/(Pt-TiO2)]. The CdS/(Pt-TiO2) has the hydrogen production rate ranging (6–9) × 10-3 mol h-1 g-1, which is higher by a factor of 3–30 than that of Pt-(CdS/TiO2). The photocatalytic activity of the ternary hybrid catalysts was extremely sensitive to where the platinum is loaded. The photoactivity of the hybrid catalyst was also assessed in terms of the photocurrent collected by the methyl viologen electron shuttle in the catalyst suspension. CdS/(Pt-TiO2) generated higher photocurrents than Pt-(CdS/TiO2) by a factor of 2–7. The extreme sensitivity of the preparation method to the hydrogen production activity should be taken into account when hybrid photocatalysts are designed and prepared.


Journal of the Chemical Society, Faraday Transactions | 1994

Time-resolved microwave conductivity. Part 1.—TiO2 photoreactivity and size quantization

Scot T. Martin; Hartmut Herrmann; Wonyong Choi; Michael R. Hoffmann

Charge-carrier recombination dynamics after laser excitation are investigated by time-resolved microwave conductivity (TRMC) measurements of quantum-sized (Q-) TiO_2, Fe^(III)-doped Q-TiO_2, ZnO and CdS, and several commercial bulk-sized TiO2 samples. After pulsed laser excitation of charge carriers, holes that escape recombination react with sorbed trans-decalin within ns while the measured conductivity signal is due to conduction-band electrons remaining in the semiconductor lattice. The charge-carrier recombination lifetime and the interfacial electron-transfer rate constant that are derived from the TRMC measurements correlate with the CW photo-oxidation quantum efficiency obtained for aqueous chloroform in the presence of TiO_2. The quantum efficiencies are 0. 4 % for Q-TiO_2, 1. 6 % for Degussa P25, and 2. 0 % for Fe^(III)-doped Q-TiO_2. The lower quantum efficiencies for Q-TiO_2 are consistent with the relative interfacial electron-transfer rates observed by TRMC for Q-TiO_2 and Degussa P25. The increased quantum efficiencies of Fe^(III)-doped Q-TiO_2 and the observed TRMC decays are consistent with a mechanism involving fast trapping of valence-band holes as Fe^(IV) and inhibition of charge-order recombination.


Energy and Environmental Science | 2016

Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2

Hyunwoong Park; Hyoung Il Kim; Gun Hee Moon; Wonyong Choi

High efficiency solar photocatalysis requires an effective separation of photogenerated charge carriers and their rapid transport to the semiconductor interface. The mechanisms and kinetics of charge separation and interfacial/interparticle charge transfers (CT) are significantly influenced by both the bulk and surface properties of the semiconductor. The surface properties are particularly important because the photocatalysis should be driven by the interfacial CT. The most popular and the most investigated semiconductor photocatalyst is based on bare and modified TiO2. This article highlights the interfacial and interparticle CTs under the bandgap excitation of TiO2 particles, visible light-induced photochemical processes via either dye-sensitization or ligand-to-metal CTs at surface modified TiO2 particles, and the applications of the photo-processes to pollutant degradation and simultaneous hydrogen production. While a variety of surface modification techniques using various nanomaterials and chemical reagents have been developed and tested so far, their effects are very diverse depending on the characteristics of the applied photocatalytic systems and even contradictory in some cases. Better understanding of how the modification influences the photoinduced CT events in semiconductors is required, particularly for designing hybrid photocatalysts with controlled CTs, which is sought-after for practical applications of photocatalysis.


Applied Catalysis B-environmental | 2001

Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone

Wonyong Choi; Joung Yun Ko; Hyunwoong Park; Jong Shik Chung

A preliminary optical fiber reactor (OFR) that employs bare quartz fibers as a light-transmitting support of TiO2 was tested for gas treatment by investigating photocatalytic oxidation of acetone in air (50–750 ppmv). Using one or four TiO2-coated fibers in a continuous flow photoreactor, a steady-state conversion up to 80% was achieved at ambient temperature and pressure. The kinetic behavior of the acetone conversion in this study could be described by zero-order kinetics. The characteristics of coated-optical fibers were quantitatively analyzed and their use in photocatalytic gas treatment was discussed in detail. All the acetone molecules degraded was quantitatively converted to CO2 with no intermediates detected. No noticeable deactivation was observed within a few hours’ operation under the present experimental conditions. The conversion of acetone linearly increased with the incident light intensity without showing any sign of saturation. The transmitted light intensity through a TiO2-coated optical fiber exponentially decreased along the fiber, showing 90% extinction within 30 cm. The photocatalytic conversion measured as a function of the coated-fiber length showed a similar trend. An optimal coating thickness was found at around 1.5m above which the photocatalytic efficiency was reduced. The presence of water vapor reduced the reactivity due to the competitive adsorption on active surface site with acetone. While a measurable conversion of acetone was observed in the absence of O2, increasing O2 concentration up to 15% effectively enhanced the conversion.


Energy and Environmental Science | 2014

Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania

Guan Zhang; Gonu Kim; Wonyong Choi

Visible light harvesting or utilization through semiconductor photocatalysis is a key technology for solar chemical conversion processes. Although titania nanoparticles are popular as a base material of photocatalysis, the lack of visible light activity needs to be overcome. This mini-review is focused on an uncommon approach to visible light activation of titania: the ligand-to-metal charge transfer (LMCT) that takes place between TiO2 nanoparticles and surface adsorbates under visible light irradiation. We discuss a basic concept of photoinduced LMCT and the recent advances in LMCT-mediated visible light photocatalysis which has been applied in environmental remediation and solar energy conversion. Although the LMCT processes have been less investigated and limited in photocatalytic applications compared with other popular visible light activation methods such as impurity doping and dye sensitization, they provide lots of possibilities and flexibility in that a wide variety of organic or inorganic compounds can form surface complexes with TiO2 and introduce a new absorption band in the visible light region. The LMCT complexes may serve as a visible light sensitizer that initiates the photocatalytic conversion of various substrates or the self-degradation of the ligand complexes (usually pollutants) themselves. We summarized and discussed various LMCT photocatalytic systems and their characteristics. The LMCT-mediated activation of titania and other wide bandgap semiconductors has great potential to be developed as a more general method of solar energy utilization in photocatalytic systems. More systematic design and utilization of LMCT complexes on semiconductors are warranted to advance the solar-driven chemical conversion processes.


Langmuir | 2011

Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities.

Seungho Cho; Ji-Wook Jang; Jungwon Kim; Jae Sung Lee; Wonyong Choi; Kun-Hong Lee

We report a method for synthesizing three distinct type II 3D ZnO/ZnSe heterostructures through simple solution-based surface modification reactions in which polycrystalline ZnSe nanoparticles formed on the surfaces of single-crystalline ZnO building blocks of 3D superstructures. The experimental results suggested a possible formation mechanism for these heterostructures. The formation of the ZnO/ZnSe heterostructures was assumed to result from a dissolution-recrystallization mechanism. The optical properties of the 3D ZnO/ZnSe heterostructures were probed by UV-vis diffuse reflectance spectroscopy. The 3D ZnO/ZnSe heterostructures exhibited absorption in the visible spectral region. The visible photocatalytic activities of 3D ZnO/ZnSe heterostructures were much higher than those of the 3D pure ZnO structures. The activities of the 3D ZnO/ZnSe heterostructures varied according to the structures under visible light. The morphologies and exposed crystal faces of pure ZnO building blocks prior to surface modification had a significant effect on the visible light photocatalytic processes of ZnO/ZnSe heterostructures after surface modification.


Journal of Photochemistry and Photobiology A-chemistry | 2003

Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium

Muhammad Shariq Vohra; Soonhyun Kim; Wonyong Choi

Photocatalytic degradation (PCD) of tetramethylammonium (TMA, (CH3)4N+) ions in water was studied using both naked-TiO2 and fluorinated-TiO2 (F–TiO2) in order to investigate how the modification in TiO2 surface functional groups affects the PCD reaction. A comparison between the naked-TiO2 and F–TiO2 systems shows that their relative photoreactivities strongly depend on pH. At pH 3, the addition of fluoride decreases the PCD rate whereas higher degradation rates are obtained at pH 5 and 7 with F–TiO2. Little fluoride effect on the TMA degradation rate is observed at pH 9. The addition of fluoride affects not only the PCD rate but also the mechanistic pathways of TMA degradation and subsequently the intermediates and product distribution. The modeling result of TiO2 surface speciation shows that the fluoride addition at pH 3 shifts the dominant surface species from Ti–OH2+ and Ti–OH to Ti–F (to near completion). This reduces the surface positive charge of TiO2 (at pH 3) upon adding fluoride and consequently lowers the electrostatic repulsion between the TMA cations and TiO2 surface. Accordingly, ATR-FTIR spectroscopic measurements show that the TMA concentration at the water/TiO2 interface is higher on F–TiO2 than naked-TiO2 film at pH 3. However, the PCD of TMA on F–TiO2 at pH 3 is reduced on the contrary, which is ascribed to the depletion of surface OH groups that are the site of surface OH radical formation. At pH 5 and 7, the surface OH sites are not completely diminished even in the presence of fluoride and the presence of surface Ti–F species in fact increases the TMA degradation rate. The fluoride-induced enhancement of PCD is yet to be understood although some speculative arguments are presented.

Collaboration


Dive into the Wonyong Choi's collaboration.

Top Co-Authors

Avatar

Hyunwoong Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Wooyul Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alok Diwakar Bokare

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gun-hee Moon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yiseul Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tae Hwa Jeon

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge