Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaeyoon Kim is active.

Publication


Featured researches published by Jaeyoon Kim.


Journal of Proteome Research | 2010

Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells.

Mi Jeong Lee; Jaeyoon Kim; Min Young Kim; Yoe-Sik Bae; Sung Ho Ryu; Tae Hoon Lee; Jae Ho Kim

Human adipose tissue-derived mesenchymal stem cells (hASCs) are useful for regeneration of inflamed or injured tissues. To identify secreted hASC proteins during inflammation, hASCs were exposed to tumor necrosis factor-alpha (TNF-alpha) and conditioned media derived from hASCs were analyzed by liquid chromatography coupled with tandem mass spectrometry. We identified 187 individual proteins as secreted proteins (secretome) in hASC-conditioned media; 118 proteins were secreted at higher levels upon TNF-alpha treatment. The TNF-alpha-induced secretome included a variety of cytokines and chemokines such as interleukin-6 (IL-6), IL-8, chemokine (C-X-C motif) ligand 6, and monocyte chemotactic protein-1 (MCP-1). TNF-alpha also increased expression of various proteases including cathepsin L, matrix metalloproteases and protease inhibitors, and induced secretion of long pentraxin 3, a key inflammatory mediator implicated in innate immunity. TNF-alpha-conditioned media stimulated migration of human monocytes, which play a key role in inflammatory responses. This migration was abrogated by pretreatment with neutralizing anti-IL-6, anti-IL-8, and anti-MCP-1 antibodies, suggesting that IL-6, IL-8, and MCP-1 are involved in migration of monocytes. Taken together, these results suggest that TNF-alpha-induced secretome may play a pivotal role in inflammatory responses and that shotgun proteomic analysis will be useful for elucidation of the paracrine functions of mesenchymal stem cells.


Molecular and Cellular Biology | 2009

Glycolytic Flux Signals to mTOR through Glyceraldehyde-3-Phosphate Dehydrogenase-Mediated Regulation of Rheb

Mi Nam Lee; Sang Hoon Ha; Jaeyoon Kim; Ara Koh; Chang Sup Lee; Jung Hwan Kim; Hyeona Jeon; Do Hyung Kim; Pann-Ghill Suh; Sung Ho Ryu

ABSTRACT The mammalian target of rapamycin (mTOR) interacts with raptor to form the protein complex mTORC1 (mTOR complex 1), which plays a central role in the regulation of cell growth in response to environmental cues. Given that glucose is a primary fuel source and a biosynthetic precursor, how mTORC1 signaling is coordinated with glucose metabolism has been an important question. Here, we found that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds Rheb and inhibits mTORC1 signaling. Under low-glucose conditions, GAPDH prevents Rheb from binding to mTOR and thereby inhibits mTORC1 signaling. High glycolytic flux suppresses the interaction between GAPDH and Rheb and thus allows Rheb to activate mTORC1. Silencing of GAPDH or blocking of the Rheb-GAPDH interaction desensitizes mTORC1 signaling to changes in the level of glucose. The GAPDH-dependent regulation of mTORC1 in response to glucose availability occurred even in TSC1-deficient cells and AMPK-silenced cells, supporting the idea that the GAPDH-Rheb pathway functions independently of the AMPK axis. Furthermore, we show that glyceraldehyde-3-phosphate, a glycolytic intermediate that binds GAPDH, destabilizes the Rheb-GAPDH interaction even under low-glucose conditions, explaining how high-glucose flux suppresses the interaction and activates mTORC1 signaling. Taken together, our results suggest that the glycolytic flux regulates mTORs access to Rheb by regulating the Rheb-GAPDH interaction, thereby allowing mTORC1 to coordinate cell growth with glucose availability.


Journal of Biological Chemistry | 2007

Extracellular ATP Mediates Necrotic Cell Swelling in SN4741 Dopaminergic Neurons through P2X7 Receptors

Dong-Jae Jun; Jaeyoon Kim; Sang-Yong Jung; Ran Song; Ji-Hyun Noh; Yong-Soo Park; Sung Ho Ryu; Joung-Hun Kim; Young-Yun Kong; Jun-Mo Chung; Kyong-Tai Kim

Extracellular ATP has recently been identified as an important regulator of cell death in response to pathological insults. When SN4741 cells, which are dopaminergic neurons derived from the substantia nigra of transgenic mouse embryos, are exposed to ATP, cell death occurs. This cell death is associated with prominent cell swelling, loss of ER integrity, the formation of many large cytoplasmic vacuoles, and subsequent cytolysis and DNA release. In addition, the cleavage of caspase-3, a hallmark of apoptosis, is induced by ATP treatment. However, caspase inhibitors do not overcome ATP-induced cell death, indicating that both necrosis and apoptosis are associated with ATP-induced cell death and suggesting that a necrotic event might override the apoptotic process. In this study we also found that P2X7 receptors (P2X7Rs) are abundantly expressed in SN4741 cells, and both ATP-induced swelling and cell death are reversed by pretreatment with the P2X7Rs antagonist, KN62, or by knock-down of P2X7Rs with small interfering RNAs. Therefore, extracellular ATP release from injured tissues may act as an accelerating factor in necrotic SN4741 dopaminergic cell death via P2X7Rs.


Proteomics | 2010

Comparative analysis of the secretory proteome of human adipose stromal vascular fraction cells during adipogenesis.

Jaeyoon Kim; Yoon Sup Choi; Seyoung Lim; Kyungmoo Yea; Jong Hyuk Yoon; Dong-Jae Jun; Sang Hoon Ha; Jung-Wook Kim; Jae Ho Kim; Pann-Ghill Suh; Sung Ho Ryu; Tae-Hoon Lee

Adipogenesis is a complex process that is accompanied by a number of molecular events. In this study, a proteomic approach was adopted to identify secretory factors associated with adipogenesis. A label‐free shotgun proteomic strategy was implemented to analyze proteins secreted by human adipose stromal vascular fraction cells and differentiated adipocytes. A total of 474 proteins were finally identified and classified according to quantitative changes and statistical significances. Briefly, 177 proteins were significantly upregulated during adipogenesis (Class I), whereas 60 proteins were significantly downregulated (Class II). Changes in the expressions of several proteins were confirmed by quantitative RT‐PCR and immunoblotting. One obvious finding based on proteomic data was that the amounts of several extracellular modulators of Wnt and transforming growth factor‐β (TGF‐β) signaling changed during adipogenesis. The expressions of secreted frizzled‐related proteins, dickkopf‐related proteins, and latent TGF‐β‐binding proteins were found to be altered during adipogenesis, which suggests that they participate in the fine regulation of Wnt and TGF‐β signaling. This study provides useful tools and important clues regarding the roles of secretory factors during adipogenic differentiation, and provides information related to obesity and obesity‐related metabolic diseases.


Proteomics | 2009

Comparative proteomic analysis of the insulin-induced L6 myotube secretome

Jong Hyuk Yoon; Kyungmoo Yea; Jaeyoon Kim; Yoon Sup Choi; Sehoon Park; Hyeongji Lee; Chang Sup Lee; Pann-Ghill Suh; Sung Ho Ryu

Emerging evidence has revealed an endocrine function for skeletal muscle; in fact, certain anti‐inflammatory cytokines are secreted only from contractile skeletal muscle. However, the skeletal muscle secretome as a whole is poorly characterized, as is how it changes in response to extracellular stimuli. Herein, we sought to identify and characterize the members of the skeletal muscle secretome, and to determine which protein secretion levels were modulated in response to insulin stimulation. To conduct these studies, we treated differentiated L6 rat skeletal muscle cells with insulin or left them untreated, and we comparatively analyzed the proteins secreted into the media. We fractionated this conditioned media using offline RP HPLC, digested the fractionated proteins, and analyzed the resulting peptides with LC‐ESI‐MS/MS. We identified a total of 254 proteins, and by using three different filtering methods, we identified 153 of these as secretory proteins. Fourteen proteins were secreted at higher levels under insulin stimulation, including several proteins known to be highly secreted in metabolic diseases; 19 proteins were secreted at lower levels under insulin stimulation. These result not only pinpointed several previously unknown, insulin induced, secretory proteins of skeletal muscle, it also described a novel approach for conditioned secretome analysis.


Journal of Biological Chemistry | 2009

Lysophosphatidylcholine Activates Adipocyte Glucose Uptake and Lowers Blood Glucose Levels in Murine Models of Diabetes

Kyungmoo Yea; Jaeyoon Kim; Jong Hyuk Yoon; Taewan Kwon; Jong Hyun Kim; Byoung Dae Lee; Hae‐Jeong Lee; Seung-Jae Lee; Jong In Kim; Tae-Hoon Lee; Moon-Chang Baek; Ho Seon Park; Kyong Soo Park; Motoi Ohba; Pann-Ghill Suh; Sung Ho Ryu

Glucose homeostasis is maintained by the orchestration of peripheral glucose utilization and hepatic glucose production, mainly by insulin. In this study, we found by utilizing a combined parallel chromatography mass profiling approach that lysophosphatidylcholine (LPC) regulates glucose levels. LPC was found to stimulate glucose uptake in 3T3-L1 adipocytes dose- and time-dependently, and this activity was found to be sensitive to variations in acyl chain lengths and to polar head group types in LPC. Treatment with LPC resulted in a significant increase in the level of GLUT4 at the plasma membranes of 3T3-L1 adipocytes. Moreover, LPC did not affect IRS-1 and AKT2 phosphorylations, and LPC-induced glucose uptake was not influenced by pretreatment with the PI 3-kinase inhibitor LY294002. However, glucose uptake stimulation by LPC was abrogated both by rottlerin (a protein kinase Cδ inhibitor) and by the adenoviral expression of dominant negative protein kinase Cδ. In line with its determined cellular functions, LPC was found to lower blood glucose levels in normal mice. Furthermore, LPC improved blood glucose levels in mouse models of type 1 and 2 diabetes. These results suggest that an understanding of the mode of action of LPC may provide a new perspective of glucose homeostasis.


Diabetologia | 2014

CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice

Dayea Kim; Jaeyoon Kim; Jong Hyuk Yoon; Jaewang Ghim; Kyungmoo Yea; Parkyong Song; So-Yeon Park; Areum Lee; Chun-Pyo Hong; Min Seong Jang; YongHoon Kwon; Sehoon Park; Myoung Ho Jang; Per-Olof Berggren; Pann-Ghill Suh; Sung Ho Ryu

Aims/hypothesisObesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance.MethodsWe used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis.ResultsWe report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity.Conclusions/interpretationIn this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.


Journal of Molecular Medicine | 2008

Lysophosphatidic acid regulates blood glucose by stimulating myotube and adipocyte glucose uptake

Kyungmoo Yea; Jaeyoon Kim; Seyoung Lim; Ho Seon Park; Kyong Soo Park; Pann-Ghill Suh; Sung Ho Ryu

Lysophosphatidic acid (LPA) is known to have diverse cellular effects, but although LPA is present in many biological fluids, including blood, its effects on glucose metabolism have not been elucidated. In this study, we investigated whether LPA stimulation is related to glucose regulation. LPA was found to enhance glucose uptake in a dose-dependent manner both in L6 GLUT4myc myotubes and 3T3-L1 adipocytes by triggering GLUT4 translocation to the plasma membrane. Moreover, the effect of LPA on glucose uptake was completely inhibited by pretreating both cells with LPA receptor antagonist Ki16425 and Gi inhibitor pertussis toxin. In addition, LPA increased the phosphorylation of AKT-1 with no effects on IRS-1, and LPA-induced glucose uptake was abrogated by pretreatment with the PI 3-kinase inhibitor LY294002. When low concentration of insulin and LPA were treated simultaneously, an additive effect on glucose uptake was observed in both cell types. In line with its cellular functions, LPA significantly lowered blood glucose levels in normal mice but did not affect insulin secretion. LPA also had a glucose-lowering effect in streptozotocin-treated type 1 diabetic mice. In combination, these results suggest that LPA is involved in the regulation of glucose homeostasis in muscle and adipose tissues.


Nature Communications | 2012

DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling

Jung-Min Kim; Hong-In Shin; Sun-Shin Cha; Chang Sup Lee; Bok Sil Hong; Seyoung Lim; Hyun-Jun Jang; Jaeyoon Kim; Yong Ryoul Yang; Yun-Hee Kim; Sanguk Yun; Girdhari Rijal; Whaseon Lee-Kwon; Jeong Kon Seo; Yong Song Gho; Sung Ho Ryu; Eun-Mi Hur; Pann-Ghill Suh

Communication between osteoblasts and endothelial cells is essential for bone fracture repair, but the molecular identities of such communicating factors are not well defined. Here we identify DJ-1 as a novel mediator of the cross-talk between osteoblasts and endothelial cells through an unbiased screening of molecules secreted from human mesenchymal stem cells during osteogenesis. We show that DJ-1 stimulates the differentiation of human mesenchymal stem cells to osteoblasts and that DJ-1 induces angiogenesis in endothelial cells through activation of fibroblast growth factor receptor-1 signalling. In a rodent model of bone fracture repair, extracellular application of DJ-1 enhances bone regeneration in vivo by stimulating the formation of blood vessels and new bones. Both these effects are blocked by antagonizing fibroblast growth factor receptor-1 signalling. These findings uncover previously undefined extracellular roles of DJ-1 to promote angiogenesis and osteogenesis, suggesting DJ-1 may have therapeutic potential to stimulate bone regeneration.


Journal of Cellular Physiology | 2013

Comparative secretome analysis of human bone marrow‐derived mesenchymal stem cells during osteogenesis

Jung-Min Kim; Jaeyoon Kim; Yun-Hee Kim; Kyong-Tai Kim; Sung Ho Ryu; Tae Hoon Lee; Pann-Ghill Suh

Osteogenesis is a tightly regulated process that involves coordinated extracellular signals from autocrine and paracrine loops. Secretory proteins during osteogenesis can inhibit cell proliferation and activate cell differentiation toward mature osteoblasts, which are characterized by mineralization. In this study, we attempted to identify these secretory proteins during osteogenesis using LC–MS/MS analysis. We compared the secretome between undifferentiated human bone marrow‐derived mesenchymal stem cells (hBMSCs) and differentiated osteoblasts. Among 315 proteins that were identified, 177 proteins were present at increased levels in osteoblasts, whereas 88 proteins were present at decreased levels. Among the identified proteins, several were validated by quantitative RT‐PCR and immunoblot analysis. Of particular interest, calcium homeostasis‐related proteins were upregulated, whereas stem cell proliferation‐related proteins and other lineage‐related proteins were downregulated during osteogenesis. These findings provide information about the dynamic changes in the expression and secretion of proteins during osteogenesis and suggest the putative role of secretory proteins in osteogenesis. J. Cell. Physiol. 228: 216–224, 2013.

Collaboration


Dive into the Jaeyoon Kim's collaboration.

Top Co-Authors

Avatar

Sung Ho Ryu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pann-Ghill Suh

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jong Hyuk Yoon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyungmoo Yea

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tae Hoon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jaewang Ghim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tae-Hoon Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dayea Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Parkyong Song

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge