Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parkyong Song is active.

Publication


Featured researches published by Parkyong Song.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Macrophage migration inhibitory factor mediates the antidepressant actions of voluntary exercise

Hyo Youl Moon; Se Hyun Kim; Yong Ryoul Yang; Parkyong Song; Hyun Yu; Hong Geun Park; Onyou Hwang; Whaseon Lee-Kwon; Jeong Kon Seo; Daehee Hwang; Jang Hyun Choi; Richard Bucala; Sung Ho Ryu; Yong Sik Kim; Pann-Ghill Suh

Voluntary exercise is known to have an antidepressant effect. However, the underlying mechanism for this antidepressant action of exercise remains unclear, and little progress has been made in identifying genes that are directly involved. We have identified macrophage migration inhibitory factor (MIF) by analyzing existing mRNA microarray data and confirmed the augmented expression of selected genes under two experimental conditions: voluntary exercise and electroconvulsive seizure. A proinflammatory cytokine, MIF is expressed in the central nervous system and involved in innate and adaptive immune responses. A recent study reported that MIF is involved in antidepressant-induced hippocampal neurogenesis, but the mechanism remains elusive. In our data, tryptophan hydroxylase 2 (Tph2) and brain-derived neurotrophic factor (Bdnf) expression were induced after MIF treatment in vitro, as well as during both exercise and electroconvulsive seizure in vivo. This increment of Tph2 was accompanied by increases in the levels of total serotonin in vitro. Moreover, the MIF receptor CD74 and the ERK1/2 pathway mediate the MIF-induced Tph2 and Bdnf gene expression as well as serotonin content. Experiments in Mif−/− mice revealed depression-like behaviors and a blunted antidepressant effect of exercise, as reflected by changes in Tph2 and Bdnf expression in the forced swim test. In addition, administration of recombinant MIF protein produced antidepressant-like behavior in rats in the forced swim test. Taken together, these results suggest a role of MIF in mediating the antidepressant action of exercise, probably by enhancing serotonin neurotransmission and neurotrophic factor-induced neurogenesis in the brain.


Diabetologia | 2014

CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice

Dayea Kim; Jaeyoon Kim; Jong Hyuk Yoon; Jaewang Ghim; Kyungmoo Yea; Parkyong Song; So-Yeon Park; Areum Lee; Chun-Pyo Hong; Min Seong Jang; YongHoon Kwon; Sehoon Park; Myoung Ho Jang; Per-Olof Berggren; Pann-Ghill Suh; Sung Ho Ryu

Aims/hypothesisObesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance.MethodsWe used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis.ResultsWe report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity.Conclusions/interpretationIn this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.


Journal of Biological Chemistry | 2013

Emodin Regulates Glucose Utilization by Activating AMP-activated Protein Kinase

Parkyong Song; Jong Hyun Kim; Jaewang Ghim; Jong Hyuk Yoon; Areum Lee; YongHoon Kwon; Hyunjung Hyun; Hyo-Youl Moon; Hueng-Sik Choi; Per-Olof Berggren; Pann-Ghill Suh; Sung Ho Ryu

Background: AMPK activation improves glucose tolerance and insulin sensitivity. Results: Emodin increases glucose uptake in skeletal muscle and lowers blood glucose levels via AMPK activation. Conclusion: Administration of emodin leads to increased glucose tolerance and insulin sensitivity in vivo. Significance: Our results highlight the potential value of emodin as a drug for the treatment of diabetes. AMP-activated protein kinase has been described as a key signaling protein that can regulate energy homeostasis. Here, we aimed to characterize novel AMP-activated kinase (AMPK)-activating compounds that have a much lower effective concentration than metformin. As a result, emodin, a natural anthraquinone derivative, was shown to stimulate AMPK activity in skeletal muscle and liver cells. Emodin enhanced GLUT4 translocation and [14C]glucose uptake into the myotube in an AMPK-dependent manner. Also, emodin inhibited glucose production by suppressing the expression of key gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, in hepatocytes. Furthermore, we found that emodin can activate AMPK by inhibiting mitochondrial respiratory complex I activity, leading to increased reactive oxygen species and Ca2+/calmodulin-dependent protein kinase kinase activity. Finally, we confirmed that a single dose administration of emodin significantly decreased the fasting plasma glucose levels and improved glucose tolerance in C57Bl/6J mice. Increased insulin sensitivity was also confirmed after daily injection of emodin for 8 days using an insulin tolerance test and insulin-stimulated PI3K phosphorylation in wild type and high fat diet-induced diabetic mouse models. Our study suggests that emodin regulates glucose homeostasis in vivo by AMPK activation and that this may represent a novel therapeutic principle in the treatment of type 2 diabetic models.


Journal of Proteome Research | 2011

Proteomic analysis of tumor necrosis factor-alpha (TNF-α)-induced L6 myotube secretome reveals novel TNF-α-dependent myokines in diabetic skeletal muscle.

Jong Hyuk Yoon; Parkyong Song; Jin-Hyeok Jang; Dae-Kyum Kim; Sunkyu Choi; Jaeyoon Kim; Jaewang Ghim; Dayea Kim; Sehoon Park; Hyeongji Lee; Dongoh Kwak; Kyungmoo Yea; Daehee Hwang; Pann-Ghill Suh; Sung Ho Ryu

There is a strong possibility that skeletal muscle can respond to irregular metabolic states by secreting specific cytokines. Obesity-related chronic inflammation, mediated by pro-inflammatory cytokines, is believed to be one of the causes of insulin resistance that results in type 2 diabetes. Here, we attempted to identify and characterize the members of the skeletal muscle secretome in response to tumor necrosis factor-alpha (TNF-α)-induced insulin resistance. To conduct this study, we comparatively analyzed the media levels of proteins released from L6 skeletal muscle cells. We found 28 TNF-α modulated secretory proteins by using separate filtering methods: Gene Ontology, SignalP, and SecretomeP, as well as the normalized Spectral Index for label-free quantification. Ten of these secretory proteins were increased and 18 secretory proteins were decreased by TNF-α treatment. Using microarray analysis of Zuker diabetic rat skeletal muscle combined with bioinformatics and Q-PCR, we found a correlation between TNF-α-mediated insulin resistance and type 2 diabetes. This novel approach combining analysis of the conditioned secretome and transcriptome has identified several previously unknown, TNF-α-dependent secretory proteins, which establish a foothold for research on the different causes of insulin resistance and their relationships with each other.


Advances in biological regulation | 2012

Secretomics for skeletal muscle cells: a discovery of novel regulators?

Jong Hyuk Yoon; Jaeyoon Kim; Parkyong Song; Tae Hoon Lee; Pann-Ghill Suh; Sung Ho Ryu

Metabolic tissues, including skeletal muscle, adipose tissue and the digestive system, dynamically secrete various factors depending on the metabolic state, communicate with each other and orchestrate functions to maintain body homeostasis. Skeletal muscle secretes cytokines such as interleukin-6 (IL-6), IL-15, fibroblast growth factor-21 (FGF21) and IL-8. These compounds, myokines, play important roles in biological homeostasis such as energy metabolism, angiogenesis and myogenesis. New technological advances have allowed secretomics - analysis of the secretome - to be performed. The application of highly sensitive mass spectrometry makes qualitative and quantitative analysis of the secretome of skeletal muscle possible. Secretory proteins derived from skeletal muscle cells under various conditions were analyzed, and many important factors were suggested. In-depth studies of the secretome from metabolic cells in various conditions are strongly recommended. This study will provide information on methods of novel communication between metabolic tissues.


Molecular and Cellular Biology | 2013

C1-Ten Is a Protein Tyrosine Phosphatase of Insulin Receptor Substrate 1 (IRS-1), Regulating IRS-1 Stability and Muscle Atrophy

Ara Koh; Mi Nam Lee; Yong Ryoul Yang; Heeyoon Jeong; Jaewang Ghim; Jeongeun Noh; Jaeyoon Kim; Dongryeol Ryu; Sehoon Park; Parkyong Song; Seung Hoi Koo; Nick R. Leslie; Per-Olof Berggren; Jang Hyun Choi; Pann Ghill Suh; Sung Ho Ryu

ABSTRACT Muscle atrophy occurs under various catabolic conditions, including insulin deficiency, insulin resistance, or increased levels of glucocorticoids. This results from reduced levels of insulin receptor substrate 1 (IRS-1), leading to decreased phosphatidylinositol 3-kinase activity and thereby activation of FoxO transcription factors. However, the precise mechanism of reduced IRS-1 under a catabolic condition is unknown. Here, we report that C1-Ten is a novel protein tyrosine phosphatase (PTPase) of IRS-1 that acts as a mediator to reduce IRS-1 under a catabolic condition, resulting in muscle atrophy. C1-Ten preferentially dephosphorylated Y612 of IRS-1, which accelerated IRS-1 degradation. These findings suggest a novel type of IRS-1 degradation mechanism which is dependent on C1-Ten and extends our understanding of the molecular mechanism of muscle atrophy under catabolic conditions. C1-Ten expression is increased by catabolic glucocorticoid and decreased by anabolic insulin. Reflecting these hormonal regulations, the muscle C1-Ten is upregulated in atrophy but downregulated in hypertrophy. This reveals a previously unidentified role of C1-Ten as a relevant PTPase contributing to skeletal muscle atrophy.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Endothelial Deletion of Phospholipase D2 Reduces Hypoxic Response and Pathological Angiogenesis

Jaewang Ghim; Jin Sook Moon; Chang Sup Lee; J. Y. Lee; Parkyong Song; Areum Lee; Jin Hyeok Jang; Dayea Kim; Jong Hyuk Yoon; Young Jun Koh; Chaithanya Chelakkot; Byung Jun Kang; Jung Min Kim; Kyung Lock Kim; Yong Ryoul Yang; Young Mi Kim; Sun Hee Kim; Daehee Hwang; Pann Ghill Suh; Gou Young Koh; Young-Yun Kong; Sung Ho Ryu

Objective— Aberrant regulation of the proliferation, survival, and migration of endothelial cells (ECs) is closely related to the abnormal angiogenesis that occurs in hypoxia-induced pathological situations, such as cancer and vascular retinopathy. Hypoxic conditions and the subsequent upregulation of hypoxia-inducible factor-1&agr; and target genes are important for the angiogenic functions of ECs. Phospholipase D2 (PLD2) is a crucial signaling mediator that stimulates the production of the second messenger phosphatidic acid. PLD2 is involved in various cellular functions; however, its specific roles in ECs under hypoxia and in vivo angiogenesis remain unclear. In the present study, we investigated the potential roles of PLD2 in ECs under hypoxia and in hypoxia-induced pathological angiogenesis in vivo. Approach and Results— Pld2 knockout ECs exhibited decreased hypoxia-induced cellular responses in survival, migration, and thus vessel sprouting. Analysis of hypoxia-induced gene expression revealed that PLD2 deficiency disrupted the upregulation of hypoxia-inducible factor-1&agr; target genes, including VEGF, PFKFB3, HMOX-1, and NTRK2. Consistent with this, PLD2 contributed to hypoxia-induced hypoxia-inducible factor-1&agr; expression at the translational level. The roles of PLD2 in hypoxia-induced in vivo pathological angiogenesis were assessed using oxygen-induced retinopathy and tumor implantation models in endothelial-specific Pld2 knockout mice. Pld2 endothelial-specific knockout retinae showed decreased neovascular tuft formation, despite a larger avascular region. Tumor growth and tumor blood vessel formation were also reduced in Pld2 endothelial-specific knockout mice. Conclusions— Our findings demonstrate a novel role for endothelial PLD2 in the survival and migration of ECs under hypoxia via the expression of hypoxia-inducible factor-1&agr; and in pathological retinal angiogenesis and tumor angiogenesis in vivo.


Molecular & Cellular Proteomics | 2015

Proteomic Analysis of the Palmitate-induced Myotube Secretome Reveals Involvement of the Annexin A1-Formyl Peptide Receptor 2 (FPR2) Pathway in Insulin Resistance

Jong Hyuk Yoon; Dayea Kim; Jin-Hyeok Jang; Jaewang Ghim; So-Yeon Park; Parkyong Song; YongHoon Kwon; Jaeyoon Kim; Daehee Hwang; Yoe-Sik Bae; Pann-Ghill Suh; Per-Olof Berggren; Sung Ho Ryu

Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.


Cellular Signalling | 2015

Apolipoprotein a1 increases mitochondrial biogenesis through AMP-activated protein kinase.

Parkyong Song; YongHoon Kwon; Kyungmoo Yea; Hyo-Youl Moon; Jong Hyuk Yoon; Jaewang Ghim; Hyunjung Hyun; Dayea Kim; Ara Koh; Per-Olof Berggren; Pann-Ghill Suh; Sung Ho Ryu

Apolipoprotein a1, which is a major lipoprotein component of high-density lipoprotein (HDL), was reported to decrease plasma glucose in type 2 diabetes. Although recent studies also have shown that apolipoprotein a1 is involved in triglyceride (TG) metabolism, the mechanisms by which apolipoprotein a1 modulates TG levels remain largely unexplored. Here we demonstrated that apolipoprotein a1 increased mitochondrial DNA and mitochondria contents through sustained AMPK activation in myotubes. This resulted in enhanced fatty acid oxidation and attenuation of free fatty acid-induced insulin resistance features in skeletal muscle. The increment of mitochondria was mediated through induction of transcription factors, such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear transcription factor 1 (NRF-1). The inhibition of AMPK by a pharmacological agent inhibited the induction of mitochondrial biogenesis. Increase of AMPK phosphorylation by apolipoprotein a1 occurs through activation of upstream kinase LKB1. Finally, we confirmed that scavenger receptor Class B, type 1 (SR-B1) is an important receptor for apolipoprotein a1 in stimulating AMPK pathway and mitochondrial biogenesis. Our study suggests that apolipoprotein a1 can alleviate obesity related metabolic disease by inducing AMPK dependent mitochondrial biogenesis.


Journal of Endocrinology | 2013

Involvement of exercise-induced macrophage migration inhibitory factor in the prevention of fatty liver disease

Hyo Youl Moon; Parkyong Song; Cheol Soo Choi; Sung Ho Ryu; Pann-Ghill Suh

Physical inactivity can lead to obesity and fat accumulation in various tissues. Critical complications of obesity include type II diabetes and nonalcoholic fatty liver disease (NAFLD). Exercise has been reported to have ameliorating effects on obesity and NAFLD. However, the underlying mechanism is not fully understood. We showed that liver expression of macrophage migration inhibitory factor (MIF) was increased after 4 weeks of treadmill exercise. Phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase in human hepatocyte cell lines was enhanced after MIF treatment. These responses were accompanied by increases in lipid oxidation. Moreover, inhibition of either AMPK or cluster of differentiation 74 resulted in inhibition of MIF-induced lipid oxidation. Furthermore, the administration of MIF to a human hepatocyte cell line and mice liver reduced liver X receptor agonist-induced lipid accumulation. Taken together, these results indicate that MIF is highly expressed in the liver during physical exercise and may prevent hepatic steatosis by activating the AMPK pathway.

Collaboration


Dive into the Parkyong Song's collaboration.

Top Co-Authors

Avatar

Sung Ho Ryu

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaewang Ghim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Pann-Ghill Suh

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jong Hyuk Yoon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dayea Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaeyoon Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

YongHoon Kwon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daehee Hwang

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Areum Lee

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge