Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jagan M.R. Patlolla is active.

Publication


Featured researches published by Jagan M.R. Patlolla.


Free Radical Biology and Medicine | 2009

Curcumin protects retinal cells from light-and oxidant stress-induced cell death.

Nawajes A. Mandal; Jagan M.R. Patlolla; Lixin Zheng; Martin Paul Agbaga; Julie Thu A. Tran; Lea D. Wicker; Anne Kasus-Jacobi; Michael H. Elliott; Chinthalapally V. Rao; Robert E. Anderson

Age-related macular degeneration (AMD) is a complex disease that has potential involvement of inflammatory and oxidative stress-related pathways in its pathogenesis. In search of effective therapeutic agents, we tested curcumin, a naturally occurring compound with known anti-inflammatory and antioxidative properties, in a rat model of light-induced retinal degeneration (LIRD) and in retina-derived cell lines. We hypothesized that any compound effective against LIRD, which involves significant oxidative stress and inflammation, would be a candidate for further characterization for its potential application in AMD. We observed significant retinal neuroprotection in rats fed diets supplemented with curcumin (0.2% in diet) for 2 weeks. The mechanism of retinal protection from LIRD by curcumin involves inhibition of NF-kappaB activation and down-regulation of cellular inflammatory genes. When tested on retina-derived cell lines (661W and ARPE-19), pretreatment of curcumin protected these cells from H(2)O(2)-induced cell death by up-regulating cellular protective enzymes, such as HO-1, thioredoxin. Since, curcumin with its pleiotropic activities can modulate the expression and activation of many cellular regulatory proteins such as NF-kappaB, AKT, NRF2, and growth factors, which in turn inhibit cellular inflammatory responses and protect cells; we speculate that curcumin would be an effective nutraceutical compound for preventive and augmentative therapy of AMD.


Cancer Research | 2006

Chemoprevention of Familial Adenomatous Polyposis by Low Doses of Atorvastatin and Celecoxib Given Individually and in Combination to APCMin Mice

Malisetty V. Swamy; Jagan M.R. Patlolla; Vernon E. Steele; Levy Kopelovich; Bandaru S. Reddy; Chinthalapally V. Rao

Preclinical and clinical studies have established evidence that cyclooxygenase-2 (COX-2) inhibitors and statins [hydroxy-3-methylglutaryl CoA reductase (HMGR) inhibitors] inhibit colon carcinogenesis. Chronic use of high doses of COX-2 inhibitors may induce side effects, and combining the low doses of agents may be an effective way to increase their efficacy and minimize the side effects. We assessed the chemopreventive efficacy of atorvastatin (Lipitor) and celecoxib individually or in combination in an animal model of familial adenomatous polyposis. Six-week-old male C57BL/6J-APCmin/+ mice were either fed diets containing 0 or 100 ppm atorvastatin or 300 ppm celecoxib, or a combination of both for approximately 80 days. Mice were sacrificed, and their intestines were scored for tumors. Normal-seeming mucosa and intestinal tumors were harvested and assayed for apoptosis (terminal deoxynucleotidyl transferase-mediated nick-end labeling) and HMGR and COX-2 protein expression and activity. We observed that 100 ppm atorvastatin significantly (P < 0.002) suppressed intestinal polyp formation. As anticipated, 300 ppm celecoxib decreased the rate of formation of intestinal polyps by approximately 70% (P < 0.0001). Importantly, the combination of 100 ppm atorvastatin and 300 ppm celecoxib in the diet suppressed the colon polyps completely and small intestinal polyps by >86% (P < 0.0001) compared with the control group. The inhibition of tumor formation by the atorvastatin and celecoxib combination was significant (P < 0.005) when compared with tumor inhibition by celecoxib alone. In addition, increased rates of apoptosis in intestinal tumors (P < 0.01-0.0001) were observed in animals fed with atorvastatin and celecoxib and more so with the combinations. Tumors of animals fed atorvastatin showed a significant decrease in HMGR-R activity. Similarly, tumors of mice exposed to celecoxib showed significantly lower levels of COX-2 activity. These observations show that atorvastatin inhibits intestinal tumorigenesis and that, importantly, when given together with low doses of celecoxib, it significantly increases the chemopreventive efficacy in an APC(min) mice.


Current Pharmaceutical Biotechnology | 2012

Triterpenoids for cancer prevention and treatment: current status and future prospects.

Jagan M.R. Patlolla; Chinthalapally V. Rao

Triterpenoids are ubiquitous in the plant kingdom. Recent evidences support the beneficial effects of naturallyoccurring triterpenoids against several types of human diseases, including various cancers. Here, we have summarized the potential of triterpenoids belonging to the lupane, oleanane, ursane, and cucurbitacin groups, and their beneficial effects based on both laboratory and clinical investigations. Anticancer potential of triterpenoids and their anti-inflammatory, anti-proliferative, and pro-apoptotic effects have been discussed both in in vitro and in vivo models. Importantly, a large number of preclinical efficacy studies using chemically-induced, as well as tumor xenograft models provided evidence that both naturally occurring and synthetic derivatives had chemopreventive and therapeutic effects. In this review, we have highlighted several studies on chemopreventive and anticancer potential of triterpenoids based on various preclinical animal models of colon, breast, prostate, and melanoma cancers. Also, we made an attempt in discussing various mechanisms by which triterpenoids regulate various transcription and growth factors, inflammatory cytokines, and intracellular signaling pathways involved in cancer cell proliferation, apoptosis and tumor angiogenesis.


Nutrition and Cancer | 2008

Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids.

Malisetty V. Swamy; Bhargava Citineni; Jagan M.R. Patlolla; Altaf Mohammed; Yuting Zhang; Chinthalapally V. Rao

Pancreatic cancer BxPC-3 cells were exposed to curcumin, docosahexaenoic acid (DHA), or combinations of both and analyzed for proliferation and apoptosis. Pancreatic tumor xenografts were established by injecting BxPC-3 cells into each flank of nude mice. After the tumors reached a size of approximately 190–200 mm3, animals were fed diets with or without 2,000 ppm curcumin in 18% corn oil or 15% fish oil + 3% corn oil for 6 more wk before assessing the tumor volume and expression of inducible nitric oxide synthase (iNOS), cyclooxygeanse-2 (COX-2), 5-lipoxinase (5-LOX), and p21. A synergistic effect was observed on induction of apoptosis (approximately sixfold) and inhibition of cell proliferation (approximately 70%) when cells were treated with curcumin (5 μ M) together with the DHA (25 μ M). Mice fed fish oil and curcumin showed a significantly reduced tumor volume, 25% (P < 0.04) and 43% (P < 0.005), respectively, and importantly, a combination of curcumin and fish oil diet showed > 72% (P < 0.0001) tumor volume reduction. Expression and activity of iNOS, COX-2, and 5-LOX are downregulated, and p21 is upregulated in tumor xenograft fed curcumin combined with fish oil diet when compared to individual diets. The preceding results evidence for the first time that curcumin combined with omega-3 fatty acids provide synergistic pancreatic tumor inhibitory properties.


Molecular Cancer Therapeutics | 2006

β-Escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21waf1/cip1 in colon cancer cells

Jagan M.R. Patlolla; Jayadev Raju; Malisetty V. Swamy; Chinthalapally V. Rao

Extracts of Aesculus hippocastanum (horse chestnut) seed have been used in the treatment of chronic venous insufficiency, edema, and hemorrhoids. Most of the beneficial effects of horse chestnut are attributed to its principal component β-escin or aescin. Recent studies suggest that β-escin may possess anti-inflammatory, anti-hyaluronidase, and anti-histamine properties. We have evaluated the chemopreventive efficacy of dietary β-escin on azoxymethane-induced colonic aberrant crypt foci (ACF). In addition, we analyzed the cell growth inhibitory effects and the induction of apoptosis in HT-29 human colon cancer cell line. To evaluate the inhibitory properties of β-escin on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.025%, or 0.05% β-escin. After 1 week, the rats received s.c. injections of azoxymethane (15 mg/kg body weight, once weekly for 2 weeks) or an equal volume of normal saline (vehicle). Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.025% and 0.05% β-escin significantly suppressed total colonic ACF formation up to ∼40% (P < 0.001) and ∼50% (P < 0.0001), respectively, when compared with control diet group. Importantly, rats fed β-escin showed dose-dependent inhibition (∼49% to 65%, P < 0.0001) of foci containing four or more aberrant crypts. To understand the growth inhibitory effects, HT-29 human colon carcinoma cell lines were treated with various concentrations of β-escin and analyzed by flow cytometry for apoptosis and cell cycle progression. β-Escin treatment in HT-29 cells induced growth arrest at the G1-S phase, which was associated with the induction of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, and this correlated with reduced phosphorylation of retinoblastoma protein. Results also indicate that β-escin inhibited growth of colon cancer cells with either wild-type or mutant p53. This novel feature of β-escin, a triterpene saponin, may be a useful candidate agent for colon cancer chemoprevention and treatment. [Mol Cancer Ther 2006;5(6):1459–66]


Cancer Research | 2005

Prevention of Colon Cancer by Low Doses of Celecoxib, a Cyclooxygenase Inhibitor, Administered in Diet Rich in ω-3 Polyunsaturated Fatty Acids

Bandaru S. Reddy; Jagan M.R. Patlolla; Barbara Simi; Steven Wang; Chinthalapally V. Rao

Epidemiologic and animal studies suggest that a high-fat diet containing mixed lipids promotes colorectal cancer, whereas fish oil lacks promoting effect. Although cyclooxygenase-2 (COX-2) inhibitors are effective chemopreventive agents against colon carcinogenesis, administration of high doses of these agents over time may induce side effects. Here, we compared the efficacy of moderately high and low doses of celecoxib administered in diets high in mixed lipids (HFML) or fish oil (HFFO) against azoxymethane-induced colon carcinogenesis in male F344 rats. One day after the last azoxymethane treatment (15 mg/kg body weight once weekly for 2 weeks), groups of rats were fed the HFML and HFFO diets containing 0, 250, 500, and 1,000 ppm celecoxib. Rats were killed 26 weeks later and colon tumors were subjected to histopathologic examination and analyzed for total COX and COX-2 synthetic activities and COX-2 expression. Rats fed the HFFO diet showed significantly lower colon tumor incidence and multiplicity compared with rats fed the HFML diet. Celecoxib at 250, 500, and 1,000 ppm in either diet significantly suppressed colon carcinogenesis. Inhibition of colon adenocarcinomas were more pronounced in animals given 250 ppm celecoxib in HFFO diet compared with 250 ppm celecoxib given in HFML diet, suggesting some synergism between omega-3 polyunsaturated fatty acids (PUFA) and celecoxib. Inhibition of colon tumors by celecoxib was associated with lower levels of COX-2 activity and expression in colon tumors. These studies support the use of low doses of celecoxib in omega-3 PUFA-rich diet as a promising approach for clinical trials.


Cancer Prevention Research | 2009

Chemopreventive Efficacy of Naproxen and Nitric Oxide–naproxen in Rodent Models of Colon, Urinary Bladder, and Mammary Cancers

Vernon E. Steele; Chinthalapally V. Rao; Yuting Zhang; Jagan M.R. Patlolla; Daniel Boring; Levy Kopelovich; M. Margaret Juliana; Clinton J. Grubbs; Ronald A. Lubet

Nonsteroidal anti-inflammatory drugs (NSAID) have been highly effective in preventing colon, urinary bladder, and skin cancer preclinically, and also in clinical trials of colon adenoma formation. However, certain NSAIDs cause gastrointestinal ulceration and may increase cardiovascular events. Naproxen seems to cause the lowest cardiovascular events of the common NSAIDs other than aspirin. Nitric oxide (NO)-naproxen was tested based on the finding that adding a NO group to NSAIDs may help alleviate GI toxicity. In the azoxymethane-induced rat colon aberrant crypt foci (ACF) model, naproxen administered at 200 and 400 ppm in the diet reduced mean ACFs in the colon by about 45% to 60%, respectively. NO-naproxen was likewise administered in the diet at roughly equimolar doses (300 and 600 ppm) and reduced total ACF by 20% to 40%, respectively. In the hydroxybutyl (butyl) nitrosamine rat urinary bladder cancer model, NO-naproxen was given at 183 or 550 ppm in the diet, and naproxen at 128 ppm. The NO-naproxen groups had 77% and 73% decreases, respectively, in the development of large urinary bladder tumors, whereas the 128 ppm naproxen group also showed a strong decrease (69%). If treatments were started 3 months after hydroxybutyl (butyl) nitrosamine, NO-naproxen (550 ppm) and naproxen (400 ppm) were also highly effective (86-94% decreases). In the methylnitrosourea-induced mammary cancer model in rats, NO-naproxen and naproxen showed nonsignificant inhibitions (12% and 24%) at 550 and 400 ppm, respectively. These data show that both naproxen and NO-naproxen are effective agents against urinary bladder and colon, but not mammary, carcinogenesis.


Cancer Research | 2008

Suppression of Familial Adenomatous Polyposis by CP-31398, a TP53 Modulator, in APCmin/+ Mice

Chinthalapally V. Rao; Malisetty V. Swamy; Jagan M.R. Patlolla; Levy Kopelovich

p53 mutations occur in a large number of human malignancies. Mutant p53 is unable to affect downstream genes necessary for DNA repair, cell cycle regulation, and apoptosis. The styrylquinazoline CP-31398 can rescue destabilized mutant p53 expression and promote activity of wild-type p53. The present study examines chemopreventive effects of CP-31398 on intestinal adenoma development in an animal model of familial adenomatous polyposis. Effects were examined at both early and late stages of adenoma formation. Effects of CP-31398 on early-stage adenomas were determined by feeding 7-week-old female C57BL/6J-APC(min) (heterozygous) and wild-type C57BL/6J mice with American Institute of Nutrition-76A diets containing 0, 100, or 200 ppm of CP-31398 for 75 days. To examine activity toward late-stage adenomas, CP-31398 administration was delayed until 15 weeks of age and continued for 50 days. During early-stage intervention, dietary CP-31398 suppressed development of intestinal tumors by 36% (P < 0.001) and 75% (P < 0.0001), at low and high dose, respectively. During late-stage intervention, CP-31398 also significantly suppressed intestinal polyp formation, albeit to a lesser extent than observed with early intervention. Adenomas in treated mice showed increased apoptotic cell death and decreased proliferation in conjunction with increased expression of p53, p21(WAF1/CIP), cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase. These observations show for the first time that the p53-modulating agent CP-31398 possesses significant chemopreventive activity in vivo against intestinal neoplastic lesions in genetically predisposed APC(min/+) mice. Chemopreventive activity of other agents that restore tumor suppressor functions of mutant p53 in tumor cells is currently under investigation.


International Journal of Cancer | 2005

Low doses of β-carotene and lutein inhibit AOM-induced rat colonic ACF formation but high doses augment ACF incidence

Jayadev Raju; Malisetty V. Swamy; Indranie Cooma; Jagan M.R. Patlolla; Brian Pittman; Bandaru S. Reddy; Vernon E. Steele; Chinthalapally V. Rao

Epidemiological studies suggest that carotenoids such as β‐carotene and lutein play an important role in reducing the risk for several cancers. However, in colon cancer there is ambiguity with regard to the role of these compounds in that both preventive effects and tumor promotion have been observed. In the present study we observed that male F344 rats were able to tolerate up to 2,500 ppm of β‐carotene as well as of lutein. We have then assessed the chemopreventive efficacy of β‐carotene and lutein at dose levels of ∼4 and 8% of the 2,500 ppm tolerated dose (TD) and also ∼40 and 80% of the TD on azoxymethane (AOM)‐induced colon carcinogenesis, using aberrant crypt foci (ACF) as a surrogate biomarker for colon cancer. Throughout the experiments, 5‐week‐old male F344 rats were fed the control diet (modified AIN‐76A) or experimental diets containing 100 or 200 ppm (∼4 or 8% of the 2,500 ppm TD), or 1,000 or 2,000 ppm (∼40 or 80% of the 2,500 ppm TD) of β‐carotene and lutein (n=10 rats/group). After 2 weeks on the experimental or control diets, all animals were injected with AOM (15 mg/kg body wt., once weekly for 2 weeks). At 14 weeks of age, all rats were killed, and their colons were evaluated for ACF. Administration of 100 or 200 ppm of β‐carotene inhibited AOM‐induced total colonic ACF formation by 24% (p<0.01) and 36% (p<0.001), respectively, whereas lutein at 200 ppm produced a 27% inhibition (p<0.01) yet had no significant effect at the 100 ppm dose level. Surprisingly, administration of 1,000 or 2,000 ppm of β‐carotene and lutein increased colonic ACF formation in a dose‐dependent manner, i.e., to 124% and 144% for the former and 110% and 159% for the latter. These results clearly suggest that further studies are warranted to determine whether the increase in ACF incidence by high doses of β‐carotene and lutein will also lead to an increase in tumor outcome. Taken together these data indicate that the chemopreventive activity of β‐carotene and lutein against colon carcinogenesis depends on the dose level.


Cancer Research | 2009

Inhibition of azoxymethane-induced colorectal cancer by CP-31398, a TP53 modulator, alone or in combination with low doses of celecoxib in male F344 rats.

Chinthalapally V. Rao; Vernon E. Steele; Malisetty V. Swamy; Jagan M.R. Patlolla; Suresh Guruswamy; Levy Kopelovich

Tumor suppressor p53 plays a major role in colorectal cancer development. The present study explores the effects of p53-modulating agent CP-31398 alone and combined with celecoxib on azoxymethane-induced aberrant crypt foci (ACF) and colon adenocarcinomas in F344 rats. Maximum tolerated doses were 400 and 3,000 ppm for CP-31398 and celecoxib, respectively. ACF and tumor efficacy endpoints were carried out on azoxymethane-treated 7-week-old rats (48 per group) fed the control AIN-76A diet. Two weeks after carcinogen treatment, rats were fed the diets containing 0, 150, or 300 ppm CP-31398, 300 ppm celecoxib, or 150 ppm CP-31398 plus 300 ppm celecoxib. ACF and colon adenocarcinomas were determined at 8 and 48 weeks after azoxymethane treatment, respectively. Dietary CP-31398 was shown to suppress mean colonic total ACF by 43% and multicrypt ACF by 63%; dietary CP-31398 at 150 and 300 ppm suppressed adenocarcinoma incidence by 30.4% (P < 0.02) and 44% (P < 0.005), respectively, and adenocarcinoma multiplicity by 51% (P < 0.005) and 65% (P < 0.0001), respectively. Dietary celecoxib suppressed colon adenocarcinoma incidence (60%; P < 0.0003) and multiplicity (70%; P < 0.0001). Importantly, combination of low-dose CP-31398 and celecoxib suppressed colon adenocarcinoma incidence by 78% and multiplicity by 90%. Rats that were fed the high-dose CP-31398 or a combination of low-dose CP-31398 and celecoxib showed considerable enhancement of p53 and p21(WAF1/CIP) expression, apoptosis, and reduced tumor cell proliferation in colonic tumors. These observations show, for the first time, that CP-31398 possesses significant dose-dependent chemopreventive activity in a well-established colon cancer model and that a combination of low-dose CP-31398 and celecoxib significantly enhanced colon cancer chemopreventive efficacy.

Collaboration


Dive into the Jagan M.R. Patlolla's collaboration.

Top Co-Authors

Avatar

Chinthalapally V. Rao

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Yuting Zhang

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Vernon E. Steele

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stan Lightfoot

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Altaf Mohammed

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Laura Biddick

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Li Qian

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Malisetty V. Swamy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge