Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaganathan Subramani is active.

Publication


Featured researches published by Jaganathan Subramani.


Journal of Immunology | 2013

Tyrosine Phosphorylation of CD13 Regulates Inflammatory Cell–Cell Adhesion and Monocyte Trafficking

Jaganathan Subramani; Mallika Ghosh; M. Mamunur Rahman; Leslie Ann Caromile; Claire Gerber; Karim Rezaul; David K. Han; Linda H. Shapiro

CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells that is important for homing to and resolving the damaged tissue at sites of injury. We showed previously that cross-linking of human monocytic CD13 with activating Abs induces strong adhesion to endothelial cells in a tyrosine kinase– and microtubule-dependent manner. In the current study, we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cross-linking of CD13 on U937 monocytic cells induced phosphorylation of a number of proteins, including Src, FAK, and ERK, and inhibition of these abrogated CD13-dependent adhesion. We found that CD13 itself was phosphorylated in a Src-dependent manner, which was an unexpected finding because its 7-aa cytoplasmic tail was assumed to be inert. Furthermore, CD13 was constitutively associated with the scaffolding protein IQGAP1, and CD13 cross-linking induced complex formation with the actin-binding protein α-actinin, linking membrane-bound CD13 to the cytoskeleton, further supporting CD13 as an inflammatory adhesion molecule. Mechanistically, mutation of the conserved CD13 cytoplasmic tyrosine to phenylalanine abrogated adhesion; Src, FAK, and ERK phosphorylation; and cytoskeletal alterations upon Ab cross-linking. Finally, CD13 was phosphorylated in isolated murine inflammatory peritoneal exudate cells, and adoptive transfer of monocytic cell lines engineered to express the mutant CD13 were severely impaired in their ability to migrate into the inflamed peritoneum, confirming that CD13 phosphorylation is relevant to inflammatory cell trafficking in vivo. Therefore, this study identifies CD13 as a novel, direct activator of intracellular signaling pathways in pathophysiological conditions.


Journal of Immunology | 2015

CD13 Restricts TLR4 Endocytic Signal Transduction in Inflammation

Mallika Ghosh; Jaganathan Subramani; M. Mamunur Rahman; Linda H. Shapiro

Dysregulation of the innate immune response underlies numerous pathological conditions. The TLR4 is the prototypical sensor of infection or injury that orchestrates the innate response via sequential activation of both cell surface and endocytic signaling pathways that trigger distinct downstream consequences. CD14 binds and delivers LPS to TLR4 and has been identified as a positive regulator of TLR4 signal transduction. It is logical that negative regulators of this process also exist to maintain the critical balance required for fighting infection, healing damaged tissue, and resolving inflammation. We showed that CD13 negatively modulates receptor-mediated Ag uptake in dendritic cells to control T cell activation in adaptive immunity. In this study, we report that myeloid CD13 governs internalization of TLR4 and subsequent innate signaling cascades, activating IRF-3 independently of CD14. CD13 is cointernalized with TLR4, CD14, and dynamin into Rab5+ early endosomes upon LPS treatment. Importantly, in response to TLR4 ligands HMGB1 and LPS, p-IRF-3 activation and transcription of its target genes are enhanced in CD13KO dendritic cells, whereas TLR4 surface signaling remains unaffected, resulting in a skewed inflammatory response. This finding is physiologically relevant as ischemic injury in vivo provoked identical TLR4 responses. Finally, CD13KO mice showed significantly enhanced IFNβ-mediated signal transduction via JAK–STAT, escalating inducible NO synthase transcription levels and promoting accumulation of oxidative stress mediators and tissue injury. Mechanistically, inflammatory activation of macrophages upregulates CD13 expression and CD13 and TLR4 coimmunoprecipitate. Therefore, CD13 negatively regulates TLR4 signaling, thereby balancing the innate response by maintaining the inflammatory equilibrium critical to innate immune regulation.


Journal of Immunology | 2012

CD13 Regulates Dendritic Cell Cross-Presentation and T Cell Responses by Inhibiting Receptor-Mediated Antigen Uptake

Mallika Ghosh; Beata McAuliffe; Jaganathan Subramani; Sreyashi Basu; Linda H. Shapiro

Dendritic cell (DC) Ag cross-presentation is generally associated with immune responses to tumors and viral Ags, and enhancement of this process is a focus of tumor vaccine design. In this study, we found that the myeloid cell surface peptidase CD13 is highly and specifically expressed on the subset of DCs responsible for cross-presentation, the CD8+ murine splenic DCs. In vivo studies indicated that lack of CD13 significantly enhanced T cell responses to soluble OVA Ag, although development, maturation, and Ag processing and presentation of DCs are normal in CD13KO mice. In vitro studies showed that CD13 regulates receptor-mediated, dynamin-dependent endocytosis of Ags such as OVA and transferrin but not fluid-phase or phagocytic Ag uptake. CD13 and Ag are cointernalized in DCs, but CD13 did not coimmunoprecipitate with Ag receptors, suggesting that CD13 does not control internalization of specific receptors but regulates endocytosis at a more universal level. Mechanistically, we found that phosphorylation of the endocytic regulators p38MAPK and Akt was dysregulated in CD13KO DCs, and blocking of these kinases perturbed CD13-dependent endocytic uptake. Therefore, CD13 is a novel endocytic regulator that may be exploited to enhance Ag uptake and T cell activation to improve the efficacy of tumor-targeted vaccines.


Frontiers in Physiology | 2014

CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle

M. Mamunur Rahman; Jaganathan Subramani; Mallika Ghosh; Jiyeon Kim Denninger; Kotaro Takeda; Guo-Hua Fong; Morgan E. Carlson; Linda H. Shapiro

Mesenchymal stem cells (MSCs) are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus, show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT) and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1), showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus, contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal stem cell therapies.


Stem Cells | 2014

CD13 Regulates Anchorage and Differentiation of the Skeletal Muscle Satellite Stem Cell Population in Ischemic Injury

M. Mamunur Rahman; Mallika Ghosh; Jaganathan Subramani; Guo-Hua Fong; Morgan E. Carlson; Linda H. Shapiro

CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation, and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a prohealing environment. Despite this healing‐favorable context, CD13KO animals showed significantly impaired limb perfusion with increased necrosis, fibrosis, and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45−/Sca1−/α7‐integrin+/β1‐integrin+ satellite cells was markedly diminished in injured CD13KO muscles and adhesion of isolated CD13KO satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was coexpressed with Pax7 on isolated muscle‐resident satellite cells. Finally, phosphorylated‐focal adhesion kinase and ERK levels were reduced in injured CD13KO muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration. Stem Cells 2014;32:1564–1577


Cardiovascular Research | 2013

CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice

Flavia E. Pereira; Chunxia Cronin; Mallika Ghosh; Si-Yuan Zhou; Mariela Agosto; Jaganathan Subramani; Ruibo Wang; Jian-Bing Shen; Wolfgang Schacke; Brannen Liang; Tie Hong Yang; Beata McAulliffe; Bruce T. Liang; Linda H. Shapiro

Abstract Aims To determine the role of CD13 as an adhesion molecule in trafficking of inflammatory cells to the site of injury in vivo and its function in wound healing following myocardial infarction induced by permanent coronary artery occlusion. Methods and results Seven days post-permanent ligation, hearts from CD13 knockout (CD13KO) mice showed significant reductions in cardiac function, suggesting impaired healing in the absence of CD13. Mechanistically, CD13KO infarcts showed an increase in small, endothelial-lined luminal structures, but no increase in perfusion, arguing against an angiogenic defect in the absence of CD13. Cardiac myocytes of CD13KO mice showed normal basal contractile function, eliminating myocyte dysfunction as a mechanism of adverse remodelling. Conversely, immunohistochemical and flow cytometric analysis of CD13KO infarcts demonstrated a dramatic 65% reduction in infiltrating haematopoietic cells, including monocytes, macrophages, dendritic, and T cells, suggesting a critical role for CD13 adhesion in inflammatory trafficking. Accordingly, CD13KO infarcts also contained fewer myofibroblasts, consistent with attenuation of fibroblast differentiation resulting from the reduced inflammation, leading to adverse remodelling. Conclusion In the ischaemic heart, while compensatory mechanisms apparently relieve potential angiogenic defects, CD13 is essential for proper trafficking of the inflammatory cells necessary to prime and sustain the reparative response, thus promoting optimal post-infarction healing.


Science Translational Medicine | 2017

Thioredoxin reverses age-related hypertension by chronically improving vascular redox and restoring eNOS function

Rob H.P. Hilgers; Venkatesh Kundumani-Sridharan; Jaganathan Subramani; Leon C. Chen; Luis G. Cuello; Nancy J. Rusch; Kumuda C. Das

Thioredoxin treatment in aged mice reversed hypertension, suggesting a potential therapeutic approach. A radical idea for blood pressure control Hypertension (high blood pressure) is very common, especially in older adults, and it contributes to a number of other cardiovascular disorders. Although a variety of therapeutic interventions are available for this condition, none of them are specific or long-lasting, and they can all cause side effects, which decrease adherence to treatment. Hilgers et al. discovered that increased expression of thioredoxin, a protein that scavenges free radicals and restores proteins damaged by oxidation, reduced hypertension in mice. Injection of recombinant human thioredoxin also reduced hypertension in mouse models, and its protective effects lasted for weeks, suggesting that it may be possible to adapt this approach for chronic treatment of human patients. The incidence of high blood pressure with advancing age is notably high, and it is an independent prognostic factor for the onset or progression of a variety of cardiovascular disorders. Although age-related hypertension is an established phenomenon, current treatments are only palliative but not curative. Thus, there is a critical need for a curative therapy against age-related hypertension, which could greatly decrease the incidence of cardiovascular disorders. We show that overexpression of human thioredoxin (TRX), a redox protein, in mice prevents age-related hypertension. Further, injection of recombinant human TRX (rhTRX) for three consecutive days reversed hypertension in aged wild-type mice, and this effect lasted for at least 20 days. Arteries of wild-type mice injected with rhTRX or mice with TRX overexpression exhibited decreased arterial stiffness, greater endothelium-dependent relaxation, increased nitric oxide production, and decreased superoxide anion (O2•−) generation compared to either saline-injected aged wild-type mice or mice with TRX deficiency. Our study demonstrates a potential translational role of rhTRX in reversing age-related hypertension with long-lasting efficacy.


Immunology | 2014

Molecular mechanisms regulating CD13-mediated adhesion

Mallika Ghosh; Claire Gerber; M. Mamunur Rahman; Kaitlyn Vernier; Flavia E. Pereira; Jaganathan Subramani; Leslie Ann Caromile; Linda H. Shapiro

CD13/Aminopeptidase N is a transmembrane metalloproteinase that is expressed in many tissues where it regulates various cellular functions. In inflammation, CD13 is expressed on myeloid cells, is up‐regulated on endothelial cells at sites of inflammation and mediates monocyte/endothelial adhesion by homotypic interactions. In animal models the lack of CD13 alters the profiles of infiltrating inflammatory cells at sites of ischaemic injury. Here, we found that CD13 expression is enriched specifically on the pro‐inflammatory subset of monocytes, suggesting that CD13 may regulate trafficking and function of specific subsets of immune cells. To further dissect the mechanisms regulating CD13‐dependent trafficking we used the murine model of thioglycollate‐induced sterile peritonitis. Peritoneal monocytes, macrophages and dendritic cells were significantly decreased in inflammatory exudates from global CD13KO animals when compared with wild‐type controls. Furthermore, adoptive transfer of wild‐type and CD13KO primary myeloid cells, or wild‐type myeloid cells pre‐treated with CD13‐blocking antibodies into thioglycollate‐challenged wild‐type recipients demonstrated fewer CD13KO or treated cells in the lavage, suggesting that CD13 expression confers a competitive advantage in trafficking. Similarly, both wild‐type and CD13KO cells were reduced in infiltrates in CD13KO recipients, confirming that both monocytic and endothelial CD13 contribute to trafficking. Finally, murine monocyte cell lines expressing mouse/human chimeric CD13 molecules demonstrated that the C‐terminal domain of the protein mediates CD13 adhesion. Therefore, this work verifies that the altered inflammatory trafficking in CD13KO mice is the result of aberrant myeloid cell subset trafficking and further defines the molecular mechanisms underlying this regulation.


Journal of Biological Chemistry | 2016

Thioredoxin uses a GSH-independent route to deglutathionylate endothelial nitric oxide synthase and protect against myocardial infarction

Jaganathan Subramani; Venkatesh Kundumani-Sridharan; Robert H.P. Hilgers; Cade Owens; Kumuda C. Das

Reversible glutathionylation plays a critical role in protecting protein function under conditions of oxidative stress generally and for endothelial nitric-oxide synthase (eNOS) specifically. Glutathione-dependent glutaredoxin-mediated deglutathionylation of eNOS has been shown to confer protection in a model of heart damage termed ischemia-reperfusion injury, motivating further study of eNOS deglutathionylation in general. In this report, we present evidence for an alternative mechanism of deglutathionylation. In this pathway thioredoxin (Trx), a small cellular redox protein, is shown to rescue eNOS from glutathionylation during ischemia-reperfusion in a GSH-independent manner. By comparing mice with global overexpression of Trx and mice with cardiomyocyte-specific overexpression of Trx, we demonstrate that vascular Trx-mediated deglutathionylation of eNOS protects against ischemia-reperfusion-mediated myocardial infarction. Trx deficiency in endothelial cells promoted eNOS glutathionylation and reduced its enzymatic activity, whereas increased levels of Trx led to deglutathionylated eNOS. Thioredoxin-mediated deglutathionylation of eNOS in the coronary artery in vivo protected against reperfusion injury, even in the presence of normal levels of GSH. We further show that Trx directly interacts with eNOS, and we confirmed that Cys-691 and Cys-910 are the glutathionylated sites, as mutation of these cysteines partially rescued the decrease in eNOS activity, whereas mutation of a distal site, Cys-384, did not. Collectively, this study shows for the first time that Trx is a potent deglutathionylating protein in vivo and in vitro that can deglutathionylate proteins in the presence of high levels of GSSG in conditions of oxidative stress.


Journal of Biological Chemistry | 2015

Thioredoxin activates MKK4-NFκB pathway in a redox dependent manner to control manganese superoxide dismutase gene expression in endothelial cells

Venkatesh Kundumani-Sridharan; Jaganathan Subramani; Kumuda C. Das

Background: The mechanism underlying thioredoxin-induced expression of manganese superoxide dismutase (MnSOD) is unknown. Results: Reduced thioredoxin activates the MKK4-NFκB pathway to repress MKK7-AP-1-mediated inhibition of MnSOD expression. Conclusion: Cellular redox status regulates gene expression via redox control of MKK4, an MAPK. Significance: This study reveals a novel mechanism underlying transcriptional regulation of MnSOD encoding a critical antioxidant enzyme. The mitogen-activated protein kinase kinase 4 (MKK4) is activated via phosphorylation of Ser-257 and Thr-261 by upstream MAP3Ks and activates JNK and p38 MAPKs in response to cellular stress. We show that thioredoxin (Trx), a cellular redox protein, activates MKK4 via Cys-246 and Cys-266 residues as mutation of these residues renders MKK4 insensitive to phosphorylation by MAP3Ks, TNFα, or Trx. MKK4 is activated in vitro by reduced Trx but not oxidized Trx in the absence of an upstream kinase, suggesting that autophosphorylation of this protein occurs due to reduction of Cys-246 and Cys-266 by Trx. Additionally, mutation of Cys-246 and Cys-266 resulted in loss of kinase activity suggesting that the redox state of Cys-246 and Cys-266 is a critical determinant of MKK4 activation. Trx induces manganese superoxide dismutase (MnSOD) gene transcription by activating MKK4 via redox control of Cys-246 and Cys-266, as mutation of these residues abrogates MKK4 activation and MnSOD expression. We further show that MKK4 activates NFκB for its binding to the MnSOD promoter, which leads to AP-1 dissociation followed by MnSOD transcription. Taken together, our studies show that the redox status of Cys-246 and Cys-266 in MKK4 controls its activities independent of MAP3K, demonstrating integration of the endothelial redox environment to MAPK signaling.

Collaboration


Dive into the Jaganathan Subramani's collaboration.

Top Co-Authors

Avatar

Linda H. Shapiro

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Mallika Ghosh

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

M. Mamunur Rahman

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Kumuda C. Das

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Venkatesh Kundumani-Sridharan

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Claire Gerber

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Flavia E. Pereira

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Guo-Hua Fong

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Leslie Ann Caromile

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge