Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Venkatesh Kundumani-Sridharan is active.

Publication


Featured researches published by Venkatesh Kundumani-Sridharan.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

CREB-Mediated IL-6 Expression Is Required for 15(S)-Hydroxyeicosatetraenoic Acid–Induced Vascular Smooth Muscle Cell Migration

Koteswara R. Chava; Manjula Karpurapu; Dong Wang; Manjula Bhanoori; Venkatesh Kundumani-Sridharan; Qiuhua Zhang; Toshihiro Ichiki; Wayne Glasgow; Gadiparthi N. Rao

Objective—Migration of vascular smooth muscle cells (VSMCs) from media to intima is a key event in the pathophysiology of atherosclerosis and restenosis. The lipoxygenase products of polyunsaturated fatty acids (PUFA) were shown to play a role in these diseases. cAMP response element binding protein (CREB) has been implicated in the regulation of VSMC growth and motility in response to thrombin and angiotensin II. The aim of the present study was to test the role of CREB in an oxidized lipid molecule, 15(S)-HETE–induced VSMC migration and neointima formation. Methods and Results—15(S)-HETE stimulated VSMC migration in CREB-dependent manner, as measured by the modified Boyden chamber method. Blockade of MEK1, JNK1, or p38MAPK inhibited 15(S)-HETE–induced CREB phosphorylation and VSMC migration. 15(S)-HETE induced expression and secretion of interleukin-6 (IL-6), as analyzed by RT-PCR and ELISA, respectively. Neutralizing anti–IL-6 antibodies blocked 15(S)-HETE–induced VSMC migration. Dominant-negative mutant-mediated blockade of ERK1/2, JNK1, p38MAPK, or CREB suppressed 15(S)-HETE–induced IL-6 expression in VSMCs. Serial 5′ deletions and site-directed mutagenesis of IL-6 promoter along with chromatin immunoprecipitation using anti-CREB antibodies showed that cAMP response element is essential for 15(S)-HETE–induced IL-6 expression. Dominant-negative CREB also suppressed balloon injury–induced IL-6 expression, SMC migration from media to intimal region, and neointima formation. Adenovirus-mediated transduction of 15-lipoxygenase 2 (15-LOX2) caused increased production of 15-HETE in VSMCs and enhanced IL-6 expression, SMC migration from media to intimal region, and neointima formation in response to arterial injury. Conclusions—The above results suggest a role for 15-LOX2–15-HETE in the regulation of VSMC migration and neointima formation involving CREB-mediated IL-6 expression.


Journal of Biological Chemistry | 2009

SRC-dependent STAT-3-mediated expression of monocyte chemoattractant protein-1 is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration

Hari-Hara Potula; Dong Wang; Dong Van Quyen; Nikhlesh K. Singh; Venkatesh Kundumani-Sridharan; Manjula Karpurapu; Edwards A. Park; Wayne Glasgow; Gadiparthi N. Rao

To understand the role of human 15-lipoxygenase 1 (15-LOX1) in vascular wall remodeling, we have studied the effect of the major 15-LOX1 metabolite of arachidonic acid, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), on vascular smooth muscle cell (VSMC) migration both in vitro and in vivo. Among 5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, 15(S)-HETE potentially stimulated more vascular smooth muscle cell (VSMC) migration. In addition, 15(S)-HETE-induced VSMC migration was dependent on Src-mediated activation of signal transducer and activator of transcription-3 (STAT-3). 15(S)-HETE also induced monocyte chemoattractant protein-1 (MCP-1) expression via Src-STAT-3 signaling, and neutralizing anti-MCP-1 antibodies completely negated 15(S)-HETE-induced VSMC migration. Cloning and characterization of a 2.6-kb MCP-1 promoter revealed the presence of four putative STAT-binding sites, and the site that is proximal to the transcription start site was found to be essential for 15(S)-HETE-induced Src-STAT-3-mediated MCP-1 expression. Rat carotid arteries that were subjected to balloon injury and transduced with Ad-15-LOX1 upon exposure to [3H]arachidonic acid ex vivo produced 15-HETE as a major eicosanoid and enhanced balloon injury-induced expression of MCP-1 in smooth muscle cells in Src and STAT-3-dependent manner in vivo. Adenovirus-mediated delivery of 15-LOX1 into rat carotid artery also led to recruitment and homing of macrophages to medial region in response to injury. In addition, transduction of Ad-15-LOX1 into arteries enhanced balloon injury-induced smooth muscle cell migration from media to intima and neointima formation. These results show for the first time that 15-LOX1–15(S)-HETE axis plays a major role in vascular wall remodeling after balloon angioplasty.


Circulation Research | 2007

An Essential Role for gp130 in Neointima Formation Following Arterial Injury

Dong Wang; Zhimin Liu; Quanyi Li; Manjula Karpurapu; Venkatesh Kundumani-Sridharan; Huiqing Cao; Farhan Rizvi; Arun K. Bajpai; Chunxiang Zhang; Gerhard Müller-Newen; Kevin W. Harris; Gadiparthi N. Rao

Interleukin (IL)-6 induced vascular smooth muscle cell (VSMC) motility in a dose-dependent manner. In addition, IL-6 stimulated tyrosine phosphorylation of gp130, resulting in the recruitment and activation of STAT-3. IL-6–induced VSMC motility was found to be dependent on activation of gp130/STAT-3 signaling. IL-6 also induced cyclin D1 expression in a time- and gp130/STAT-3–dependent manner in VSMCs. Suppression of cyclin D1 levels via the use of its small interfering RNA molecules inhibited IL-6–induced VSMC motility. Furthermore, balloon injury induced IL-6 expression both at mRNA and protein levels in rat carotid artery. Balloon injury also caused increased STAT-3 phosphorylation and cyclin D1 expression, leading to smooth muscle cell migration from the media to the intimal region. Blockade of gp130/STAT-3 signaling via adenovirus-mediated expression of dngp130 or dnSTAT-3 attenuated balloon injury–induced STAT-3 phosphorylation and cyclin D1 induction, resulting in reduced smooth muscle cell migration from media to intima and decreased neointima formation. Together, these observations for the first time suggest that IL-6/gp130/STAT-3 signaling plays an important role in vascular wall remodeling particularly in the settings of postangioplasty and thereby in neointima formation.


Journal of Biological Chemistry | 2010

Cyclin D1 is a bona fide target gene of NFATc1 and is sufficient in the mediation of injury-induced vascular wall remodeling

Manjula Karpurapu; Dong Wang; Dong Van Quyen; Tae Kang Kim; Venkatesh Kundumani-Sridharan; Srinidhi Pulusani; Gadiparthi N. Rao

Platelet-derived growth factor BB induced cyclin D1 expression in a time- and nuclear factor of activated T cells (NFAT)-dependent manner in human aortic smooth muscle cells (HASMCs), and blockade of NFATs prevented HASMC DNA synthesis and their cell cycle progression from G1 to S phase. Selective inhibition of NFATc1 by its small interfering RNA also blocked HASMC proliferation and migration. Characterization of the cyclin D1 promoter revealed the presence of several NFAT binding sites, and the site at nucleotide −1333 was found to be sufficient in mediating platelet-derived growth factor BB-induced cyclin D1 promoter-luciferase reporter gene activity. In addition to its role in cell cycle progression, cyclin D1 mediated HASMC migration in an NFATc1-dependent manner. Balloon injury-induced cyclin D1-CDK4 activity requires NFAT activation, and adenovirus-mediated transduction of cyclin D1 was found to be sufficient to overcome the blockade effect of NFATs by VIVIT on balloon injury-induced vascular wall remodeling events, including smooth muscle cell migration from the medial to luminal region, their proliferation in the intimal region, and neointima formation. Together, these results provide more mechanistic evidence for the role of NFATs, particularly NFATc1, in the regulation of HASMC proliferation and migration as well as vascular wall remodeling. NFATc1 could be a potential therapeutic target against the renarrowing of artery after angioplasty.


Cancer Research | 2007

15(S)-Hydroxyeicosatetraenoic Acid–Induced Angiogenesis Requires STAT3-Dependent Expression of VEGF

Kalyan Srivastava; Venkatesh Kundumani-Sridharan; Baolin Zhang; Arun K. Bajpai; Gadiparthi N. Rao

15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] activated signal transducer and activator of transcription 3 (STAT3) as measured by its tyrosine phosphorylation, translocation from the cytoplasm to the nucleus, DNA binding, and reporter gene activity in human dermal microvascular endothelial cells (HDMVEC). Inhibition of STAT3 activation via adenovirus-mediated expression of its dominant-negative mutant suppressed 15(S)-HETE-induced HDMVEC migration and tube formation in vitro and aortic ring and Matrigel plug angiogenesis in vivo. 15(S)-HETE induced the expression of vascular endothelial growth factor (VEGF) in a time- and STAT3-dependent manner in HDMVEC. In addition, neutralizing anti-VEGF antibodies blocked 15(S)-HETE-induced HDMVEC migration and tube formation in vitro and aortic ring and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that 15(S)-HETE-induced angiogenesis requires STAT3-dependent expression of VEGF. In view of these findings, it is suggested that eicosanoids, particularly 15(S)-HETE, via its capacity to stimulate angiogenesis, may influence the progression of cancer and vascular disease.


Journal of Biological Chemistry | 2011

15-Lipoxygenase 1-enhanced Src-Janus kinase 2-signal transducer and activator of transcription 3 stimulation and monocyte chemoattractant protein-1 expression require redox-sensitive activation of epidermal growth factor receptor in vascular wall remodeling

Nikhlesh K. Singh; Dong Wang; Venkatesh Kundumani-Sridharan; Dong Van Quyen; Jixiao Niu; Gadiparthi N. Rao

To understand the mechanisms by which 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) activates signal transducer and activator of transcription 3 (STAT3), we studied the role of epidermal growth factor receptor (EGFR). 15(S)-HETE stimulated tyrosine phosphorylation of EGFR in a time-dependent manner in vascular smooth muscle cells (VSMCs). Interference with EGFR activation blocked 15(S)-HETE-induced Src and STAT3 tyrosine phosphorylation, monocyte chemoattractant protein-1 (MCP-1) expression and VSMC migration. 15(S)-HETE also induced tyrosine phosphorylation of Janus kinase 2 (Jak2) in VSMCs, and its inhibition substantially reduced STAT3 phosphorylation, MCP-1 expression, and VSMC migration. In addition, Src formed a complex with EGFR and Jak2, and its inhibition completely blocked Jak2 and STAT3 phosphorylation, MCP-1 expression, and VSMC migration. 15(S)-HETE induced the production of H2O2 via an NADPH oxidase-dependent manner and its scavengers, N-acetyl cysteine (NAC) and catalase suppressed 15(S)-HETE-stimulated EGFR, Src, Jak2, and STAT3 phosphorylation and MCP-1 expression. Balloon injury (BI) induced EGFR, Src, Jak2, and STAT3 phosphorylation, and inhibition of these signaling molecules attenuated BI-induced MCP-1 expression and smooth muscle cell migration from the medial to the luminal surface resulting in reduced neointima formation. In addition, inhibition of EGFR blocked BI-induced Src, Jak2, and STAT3 phosphorylation. Similarly, interference with Src activation suppressed BI-induced Jak2 and STAT3 phosphorylation. Furthermore, adenovirus-mediated expression of dnJak2 also blocked BI-induced STAT3 phosphorylation. Consistent with the effects of 15(S)-HETE on the activation of EGFR-Src-Jak2-STAT3 signaling in VSMCs in vitro, adenovirus-mediated expression of 15-lipoxygenase 1 (15-Lox1) enhanced BI-induced EGFR, Src, Jak2, and STAT3 phosphorylation leading to enhanced MCP-1 expression in vivo. Blockade of Src or Jak2 suppressed BI-induced 15-Lox1-enhanced STAT3 phosphorylation, MCP-1 expression, and neointima formation. In addition, whereas dominant negative Src blocked BI-induced 15-Lox1-enhanced Jak2 phosphorylation, dnJak2 had no effect on Src phosphorylation. Together, these observations demonstrate for the first time that the 15-Lox1–15(S)-HETE axis activates EGFR via redox-sensitive manner, which in turn mediates Src-Jak2-STAT3-dependent MCP-1 expression leading to vascular wall remodeling.


Blood | 2010

15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression.

Venkatesh Kundumani-Sridharan; Jixiao Niu; Dong Wang; Dong Van Quyen; Qiuhua Zhang; Nikhlesh K. Singh; Jaganathan Subramani; Saradasri Karri; Gadiparthi N. Rao

To understand the mechanisms underlying 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE]-induced angiogenesis, we studied the role of Egr-1. 15(S)-HETE induced Egr-1 expression in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Blockade of Egr-1 via forced expression of its dominant-negative mutant attenuated 15(S)-HETE-induced HDMVEC migration and tube formation as well as Matrigel plug angiogenesis. 15(S)-HETE-induced Egr-1 expression requires Src activation. In addition, adenovirus-mediated expression of dominant-negative mutant of Src blocked 15(S)-HETEs effects on migration and tube formation of HDMVECs and Matrigel plug angiogenesis. 15(S)-HETE induced fibroblast growth factor-2 (FGF-2) expression rapidly via Src-mediated production of Egr-1. Cloning and mutational analysis of FGF-2 promoter revealed that Egr-1 binding site proximal to transcription start site is required for 15(S)-HETE-induced FGF-2 expression. Neutralizing antibody-mediated suppression of FGF-2 function also attenuated the effects of 15(S)-HETE on HDMVEC migration and tube formation as well as Matrigel plug angiogenesis. Furthermore, in contrast to wild-type mice, 12/15-LOX(-/-) mice exhibited decreased Matrigel plug angiogenesis in response to AA, which was rescued by 15(S)-HETE. On the basis of these observations, we conclude that 15(S)-HETE-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2. These findings may suggest that 15(S)-HETE could be a potential endogenous regulator of pathologic angiogenesis associated with atherosclerosis and restenosis.


Journal of Biological Chemistry | 2013

12/15-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: a new role for 15(S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction.

Venkatesh Kundumani-Sridharan; Elena Dyukova; Dale E. Hansen; Gadiparthi N. Rao

Background: The purpose of this study is to test the role of 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) in endothelial barrier function. Results: 15(S)-HETE by increasing zonula occluden (ZO)-2 tyrosine phosphorylation disrupts tight junctions and thereby increases endothelial barrier permeability. Conclusion: 12/15-LO and its arachidonic acid metabolite, 15(S)-HETE, play a crucial role in endothelial dysfunction. Significance: 12/15-Lipooxygenase by increasing endothelial barrier permeability could facilitate monocyte/macrophage transmigration and enhance vascular inflammation. A convincing body of evidence suggests that 12/15-lipoxygenase (12/15-LO) plays a role in atherosclerosis. However, the mechanisms of its involvement in the pathogenesis of this disease are not clear. Therefore, the purpose of this study is to understand the mechanisms by which 12/15-LO mediates endothelial dysfunction. 15(S)-Hydroxyeicosatetraenoic acid (15(S)-HETE), the major 12/15-LO metabolite of arachidonic acid (AA), induced endothelial barrier permeability via Src and Pyk2-dependent zonula occluden (ZO)-2 tyrosine phosphorylation and its dissociation from the tight junction complexes. 15(S)-HETE also stimulated macrophage adhesion to the endothelial monolayer in Src and Pyk2-dependent manner. Ex vivo studies revealed that exposure of arteries from WT mice to AA or 15(S)-HETE led to Src-Pyk2-dependent ZO-2 tyrosine phosphorylation, tight junction disruption, and macrophage adhesion, whereas the arteries from 12/15-LO knock-out mice are protected from these effects of AA. Feeding WT mice with a high-fat diet induced the expression of 12/15-LO in the arteries leading to tight junction disruption and macrophage adhesion and deletion of the 12/15-LO gene disallowed these effects. Thus, the findings of this study provide the first evidence of the role of 12/15-LO and its AA metabolite, 15(S)-HETE, in high-fat diet-induced endothelial tight junction disruption and macrophage adhesion, the crucial events underlying the pathogenesis of atherosclerosis.


Blood | 2010

PLD1-dependent PKCγ activation downstream to Src is essential for the development of pathologic retinal neovascularization

Qiuhua Zhang; Dong Wang; Venkatesh Kundumani-Sridharan; Laxmisilpa Gadiparthi; Dianna A. Johnson; Gabor Tigyi; Gadiparthi N. Rao

Vascular endothelial growth factor (VEGF) appears to be an important mediator of pathologic retinal angiogenesis. In understanding the mechanisms of pathologic retinal neovascularization, we found that VEGF activates PLD1 in human retinal microvascular endothelial cells, and this event is dependent on Src. In addition, VEGF activates protein kinase C-gamma (PKCgamma) via Src-dependent PLD1 stimulation. Inhibition of Src, PLD1, or PKCgamma via pharmacologic, dominant negative mutant, or siRNA approaches significantly attenuated VEGF-induced human retinal microvascular endothelial cell migration, proliferation, and tube formation. Hypoxia also induced Src-PLD1-PKCgamma signaling in retina, leading to retinal neovascularization. Furthermore, siRNA-mediated down-regulation of VEGF inhibited hypoxia-induced Src-PLD1-PKCgamma activation and neovascularization. Blockade of Src-PLD1-PKCgamma signaling via the siRNA approach also suppressed hypoxia-induced retinal neovascularization. Thus, these observations demonstrate, for the first time, that Src-dependent PLD1-PKCgamma activation plays an important role in pathologic retinal angiogenesis.


Journal of Biological Chemistry | 2012

Protein Kinase N1 Is a Novel Substrate of NFATc1-mediated Cyclin D1-CDK6 Activity and Modulates Vascular Smooth Muscle Cell Division and Migration Leading to Inward Blood Vessel Wall Remodeling

Nikhlesh K. Singh; Venkatesh Kundumani-Sridharan; Sanjay Kumar; Shailendra K. Verma; Sivareddy Kotla; Hideyuki Mukai; Mark R. Heckle; Gadiparthi N. Rao

Background: The purpose of this study was to test the role of PKN1 in vascular wall remodeling. Results: PKN1 mediates MCP-1-induced HASMC migration/proliferation and balloon injury-induced neointima formation. Conclusion: PKN1 plays a role in vascular wall remodeling following balloon injury. Significance: PKN1 could be a promising target for the next generation of drugs for vascular diseases such as restenosis. Toward understanding the mechanisms of vascular wall remodeling, here we have studied the role of NFATc1 in MCP-1-induced human aortic smooth muscle cell (HASMC) growth and migration and injury-induced rat aortic wall remodeling. We have identified PKN1 as a novel downstream target of NFATc1-cyclin D1/CDK6 activity in mediating vascular wall remodeling following injury. MCP-1, a potent chemoattractant protein, besides enhancing HASMC motility, also induced its growth, and these effects require NFATc1-dependent cyclin D1 expression and CDK4/6 activity. In addition, MCP-1 induced PKN1 activation in a sustained and NFATc1-cyclin D1/CDK6-dependent manner. Furthermore, PKN1 activation is required for MCP-1-induced HASMC growth and migration. Balloon injury induced PKN1 activation in NFAT-dependent manner and pharmacological or dominant negative mutant-mediated blockade of PKN1 function or siRNA-mediated down-regulation of its levels substantially suppressed balloon injury-induced smooth muscle cell migration and proliferation resulting in reduced neointima formation. These novel findings suggest that PKN1 plays a critical role in vascular wall remodeling, and therefore, it could be a promising new target for the next generation of drugs for vascular diseases, particularly restenosis following angioplasty, stent implantation, or vein grafting.

Collaboration


Dive into the Venkatesh Kundumani-Sridharan's collaboration.

Top Co-Authors

Avatar

Gadiparthi N. Rao

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Nikhlesh K. Singh

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Dong Wang

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Dong Van Quyen

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Manjula Karpurapu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Qiuhua Zhang

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jaganathan Subramani

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jixiao Niu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Koteswara R. Chava

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Sanjay Kumar

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge