Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jagannath Kuchlyan is active.

Publication


Featured researches published by Jagannath Kuchlyan.


Langmuir | 2013

Spontaneous Transition of Micelle–Vesicle–Micelle in a Mixture of Cationic Surfactant and Anionic Surfactant-like Ionic Liquid: A Pure Nonlipid Small Unilamellar Vesicular Template Used for Solvent and Rotational Relaxation Study

Surajit Ghosh; Chiranjib Ghatak; Chiranjib Banerjee; Sarthak Mandal; Jagannath Kuchlyan; Nilmoni Sarkar

The micelle-vesicle-micelle transition in aqueous mixtures of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the anionic surfactant-like ionic liquid 1-butyl-3-methylimidazolium octyl sulfate, [C4mim][C8SO4] has been investigated by using dynamic light scattering (DLS), transmission electron microscopy (TEM), surface tension, conductivity, and fluorescence anisotropy at different volume fractions of surfactant. The surface tension value decreases sharply with increasing CTAB concentration up to ∼0.38 volume fraction and again increases up to ∼0.75 volume fraction of CTAB. Depending upon their relative amount, these surfactants either mixed together to form vesicles and/or micelles, or both of these structures were in equilibrium. Fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), incorporated in this system at different composition of surfactant indicates the formation of micelle and vesicle structures. The apparent hydrodynamic diameter of these large multilamellar vesicles is about ∼200 nm-300 nm obtained by DLS measurement and finally confirmed by TEM micrographs. The large multilamellar vesicles are transformed into small unilamellar ones by sonication using a Lab-line instruments probe sonicator with a diameter of ∼90-125 nm. To investigate the heterogeneity, solvent, and rotational relaxation of coumarin-153 (C-153) have been investigated in these unilamellar vesicles by using picosecond time-resolved fluorescence spectroscopic technique. The solvation dynamics of C-153 in these vesicles is found to be biexponential with average time constant ∼580 ps. This indicates the slow relaxation of water molecules in the surfactant bilayer. In accordance with solvation dynamics, fluorescence anisotropy analysis of C-153 in unilamellar vesicles also indicates hindered rotation compared to bulk water.


Journal of Physical Chemistry B | 2013

Modulation of the Photophysical Properties of Curcumin in Nonionic Surfactant (Tween-20) Forming Micelles and Niosomes: A Comparative Study of Different Microenvironments

Sarthak Mandal; Chiranjib Banerjee; Surajit Ghosh; Jagannath Kuchlyan; Nilmoni Sarkar

The modulation of the photophysical properties of curcumin inside two different types of microenvironments provided by nonionic surfactant forming micelles and vesicles (niosomes) has been investigated using steady state and time-resolved fluorescence spectroscopy. The formation of small unilamellar Tween-20/cholesterol niosomes with narrow size distribution has been successfully demonstrated by means of dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques. Our results indicate that niosomes are a better possible delivery system than the conventional surfactants forming normal micelles to suppress the level of degradation of curcumin. The enhanced fluorescence intensity along with the significant blue-shift in the emission maxima of curcumin upon encapsulation into the hydrophobic microenvironments of micelles and niosomes is a consequence of the reduced interaction of curcumin with the water molecules. We found that the more rigid and confined microenvironment of niosomes enhances the steady state fluorescence intensity along with the fluorescence lifetime of curcumin more than in micelles. The rigidity of the niosome membrane which arises basically due to the presence of cholesterol molecules increases the level of interaction between curcumin and the oxoethylene units of Tween-20 molecules. It is also possible for the hydroxyl groups of the cholesterol moieties to form intermolecular hydrogen bonds with curcumin to perturb nonradiative deactivation mechanism through excited state intramolecular hydrogen atom transfer (ESIHT).


Journal of Physical Chemistry B | 2014

Vesicles Formed in Aqueous Mixtures of Cholesterol and Imidazolium Surface Active Ionic Liquid: A Comparison with Common Cationic Surfactant by Water Dynamics

Sarthak Mandal; Jagannath Kuchlyan; Surajit Ghosh; Chiranjib Banerjee; Niloy Kundu; Debasis Banik; Nilmoni Sarkar

The formation of stable unilamellar vesicles which hold great potential for biological as well as biomedical applications has been reported in the aqueous mixed solution of a surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) and cholesterol. To make a comparison we have also shown the formation of such stable vesicles using a common cationic surfactant, benzyldimethylhexadecylammonium chloride (BHDC) which has a similar alkyl chain length but different headgroup region to that of [C16mim]Cl. It has been revealed from dynamic light scattering (DLS), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), and other optical spectroscopic techniques that the micelles of [C16mim]Cl and BHDC in aqueous solutions transform into stable unilamellar vesicles upon increasing concentration of cholesterol. We find that, as the concentration of cholesterol increases, the solvation and rotational relaxation time of C153 in [C16mim]Cl/cholesterol solution as well as in BHDC/cholesterol solution gradually increases indicating a significant decrease in the hydration behavior around the self-assemblies upon micelle-vesicle transition. However, the extent of increase in solvation and rotational relaxation time is more prominent in the case of [C16mim]Cl/cholesterol solutions than in the BHDC/cholesterol system. This indicates that [C16mim]Cl/cholesterol vesicular membranes are comparatively less hydrated and more rigid than the BHDC/cholesterol vesicular bilayer.


Journal of Physical Chemistry B | 2013

A Step toward the Development of High-Temperature Stable Ionic Liquid-in-Oil Microemulsions Containing Double-Chain Anionic Surface Active Ionic Liquid

Vishal Govind Rao; Chiranjib Banerjee; Surajit Ghosh; Sarthak Mandal; Jagannath Kuchlyan; Nilmoni Sarkar

Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.


Journal of Physical Chemistry B | 2013

An Investigation into the Effect of the Structure of Bile Salt Aggregates on the Binding Interactions and ESIHT Dynamics of Curcumin: A Photophysical Approach To Probe Bile Salt Aggregates as a Potential Drug Carrier

Sarthak Mandal; Surajit Ghosh; Debasis Banik; Chiranjib Banerjee; Jagannath Kuchlyan; Nilmoni Sarkar

This work demonstrates the utilization of bile salt aggregates as a potential biological host system for studying the binding interactions and dynamics of the poorly-water-soluble drug curcumin by means of photophysical techniques. We found that the level of degradation of curcumin is greatly suppressed upon encapsulation into the nanocavities of three different bile salt aggregates. However, NaTC aggregates are more effective to suppress the level of degradation of curcumin than NaCh and NaDC aggregates. We also report the modulation of the photophysical and dynamical properties of curcumin into the nanocavities of bile salt aggregates using steady-state and time-resolved fluorescence spectroscopy. The reduced level of interaction of curcumin with water upon incorporation into the different binding sites of bile salt aggregates results in an enhanced fluorescence intensity along with the blue shift in the emission maxima of curcumin. However, the observation of higher fluorescence quantum yield as well as longer fluorescence lifetime in NaTC aggregates compared to that in NaCh and NaDC aggregates clearly indicates a more effective decrease in the excited-state intramolecular hydrogen atom transfer (ESIHT) mediated nonradiative deactivation of curcumin by the interaction with the anionic headgroup of NaTC. The binding and location of curcumin into the bile salt aggregates has been further confirmed from the steady-state fluorescence anisotropy measurements. In addition, we have shown the effect of addition of salt on the photophysical properties of curcumin in the confined environments of bile salt aggregates. Our results indicate that on addition of salt the time scale of ESIHT process of curcumin in bile salt aggregates is markedly increased.


Langmuir | 2015

How Does the Surface Charge of Ionic Surfactant and Cholesterol Forming Vesicles Control Rotational and Translational Motion of Rhodamine 6G Perchlorate (R6G ClO4)

Surajit Ghosh; Arpita Roy; Debasis Banik; Niloy Kundu; Jagannath Kuchlyan; Anjali Dhir; Nilmoni Sarkar

The rotational dynamics and translational diffusion of a hydrophilic organic molecule, rhodamine 6G perchlorate (R6G ClO4) in small unilamellar vesicles formed by two different ionic surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), with cholesterol have been investigated using fluorescence spectroscopic methods. Moreover, in this article the formation of vesicle using anionic surfactant, SDS at different cholesterol-to-surfactant molar ratio (expressed by Q value (Q = [cholesterol]/[surfactant])) has also been reported. Visual observation, dynamic light scattering (DLS) study, turbidity measurement, steady state fluorescence anisotropy (r0) measurement, and eventually microscopic images reveal the formation of small unilamellar vesicles in aqueous solution. Also, in this study, an attempt has been made to observe whether the cationic probe molecule, rhodamine 6G (R6G) experiences similar or different microenvironment in cholesterol-SDS and cholesterol-CTAB assemblies with increase in cholesterol concentration. The influence of cholesterol on rotational and translational diffusion of R6G molecules has been investigated by monitoring UV-vis absorption, fluorescence, time-resolved fluorescence anisotropy, and finally fluorescence correlation spectroscopy (FCS) measurements. In cholesterol-SDS assemblies, due to the strong electrostatic attractive interaction between the negatively charged surface of vesicle and cationic R6G molecules, the rotational and diffusion motion of R6G becomes slower. However, in cholesterol-CTAB aggregates, the enhanced hydrophobicity and electrostatic repulsion induces the migration of R6G from vesicle bilayer to aqueous phase. The experimental observations suggest that the surface charge of vesicles has a stronger influence than the hydrophobicity of the vesicle bilayer on the rotational and diffusion motion of R6G molecules.


Langmuir | 2015

Spectroscopy and Fluorescence Lifetime Imaging Microscopy To Probe the Interaction of Bovine Serum Albumin with Graphene Oxide

Jagannath Kuchlyan; Niloy Kundu; Debasis Banik; Arpita Roy; Nilmoni Sarkar

The interaction of graphene oxide (GO) with bovine serum albumin (BSA) in aqueous buffer solution has been investigated with various spectroscopic and imaging techniques. At single molecular resolution this interaction has been performed using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) techniques. The conformational dynamics of BSA on GOs influence have been explored by FCS and circular dichroism (CD) spectroscopy. For the FCS studies BSA was labeled covalently by a fluorophore, Alexa Fluor 488. On the addition of GO in phosphate buffer of 10 mM at pH 7.4 the diffusion time (τD) and the hydrodynamic radius (Rh) of BSA increase due to adsorption of BSA. Conformational relaxation time components of native BSA drastically vary with the addition of GO, signifying the change of conformational dynamics of BSA after addition of GO. The adsorption isotherm also indicates significant adsorption of BSA on the GO surface. Adsorption of BSA on the GO surface has shown in direct images of atomic force microscopy (AFM) and FLIM. Fluorescence quenching study of BSA with addition of GO also indicates that there is strong interaction between BSA and GO.


Journal of Physical Chemistry B | 2013

Unique characteristics of ionic liquids comprised of long-chain cations and anions: a new physical insight.

Chiranjib Banerjee; Sarthak Mandal; Surajit Ghosh; Jagannath Kuchlyan; Niloy Kundu; Nilmoni Sarkar

We have designed a unique class of surface active ionic liquids (SAILs) and utilized them to prepare IL-in-oil microemulsions as well as large unilamellar vesicles (LUVs). The IL-in-oil microemulsions were characterized by a phase behavior study, regular swelling behavior, and also by spectral shift of coumarin-480 probe molecules. The LUVs were characterized by dynamic light scattering and transmission electron microscope measurements. Our work opens up the possibility of creating a huge number of IL-in-oil microemulsions as well as LUVs simply by replacing the cation of NaAOT with a long chain cation.


Journal of Physical Chemistry B | 2013

A Novel Ionic Liquid-in-Oil Microemulsion Composed of Biologically Acceptable Components: An Excitation Wavelength Dependent Fluorescence Resonance Energy Transfer Study

Sarthak Mandal; Surajit Ghosh; Chiranjib Banerjee; Jagannath Kuchlyan; Debasis Banik; Nilmoni Sarkar

In this work we have reported the formulation of a novel ionic liquid-in-oil (IL/O) microemulsion where the polar core of the ionic liquid, 1-ethyl-3-methylimidazolium n-butylsulfate ([C2mim][C4SO4]), is stabilized by a mixture of two nontoxic nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween-80) and sorbitan laurate (Span-20), in a biological oil phase of isopropyl myristate (IPM). The formation of the microemulsion droplets has been confirmed from the dynamic light scattering (DLS) and phase behavior study. To assess the dynamic heterogeneity of this tween-based IL/O microemulsion, we have performed an excitation wavelength dependent fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G). The multiple donor-acceptor (D-A) distances, ∼15, 30, and 45 Å, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C480, in the different regions of the microemulsion system. With increasing the excitation wavelength from 375 to 408 nm, the contribution of the rise component of ∼240 ps which results the D-A distance of ∼30 Å increases significantly due to the enhanced contribution of the C480 probe molecules closer to the acceptor in the ionic liquid pool of the microemulsion.


Journal of Physical Chemistry B | 2013

Curcumin in reverse micelle: an example to control excited-state intramolecular proton transfer (ESIPT) in confined media.

Chiranjib Banerjee; Chiranjib Ghatak; Sarthak Mandal; Surajit Ghosh; Jagannath Kuchlyan; Nilmoni Sarkar

In this Article, we focused on the modulation of the photophysical properties of curcumin, an anti-cancer drug, in aqueous and nonaqueous reverse micelles of AOT in n-heptane using steady-state and time-resolved fluorescence spectroscopy. The instability of curcumin is a common problem which restricts its numerous applications like Alzheimer disease, HIV infections, cystic fibrosis, etc. Our study reveals that curcumin shows comparatively higher stability after encapsulation into the interfacial region of the reverse micelle. To get a vivid description of the microenvironment, we added hydrogen-bond-donor (HBD) as well as non-hydrogen-bond-donor (NBD) core solvents. For experimental purposes, we used water, ethylene glycol (EG), glycerol (GY) as HBD solvents and N,N-dimethyl formamide (DMF) as a NBD solvent. With increasing amount of core solvents, irrespective of HBD or NBD, the fluorescence intensity and lifetime of curcumin increase with remarkable red-shift inside the reverse micelle. This is attributed to the modulation of the nonradiative rates associated with the excited-state intermolecular hydrogen bonding between the pigment and the polar solvents. We obtained a high partition constant at W0 = 0 (W0 = [core solvent]/[AOT]) which is certainly due to the hydrogen bonding between the negatively charged sulfonate group of AOT and hydroxyl groups of curcumin. Steady-state anisotropy and time-resolved results give an idea about the microenvironment sensed by the curcumin molecules. The red-shift of emission spectra, increase in the value of ET(30), as well as the increase in the fluorescence lifetime were interpreted as being caused by the partition of the probe between the micellar interface and the polar core solvent. Indeed, we show here that it is possible to control the excited state intramolecular proton transfer (ESIPT) process of curcumin by simply changing the properties of the AOT reverse micelle interfaces by choosing the appropriate polar solvents to make the reverse micelle media.

Collaboration


Dive into the Jagannath Kuchlyan's collaboration.

Top Co-Authors

Avatar

Nilmoni Sarkar

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Niloy Kundu

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Surajit Ghosh

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Debasis Banik

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Chiranjib Banerjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Arpita Roy

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sarthak Mandal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Chiranjib Ghatak

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Dibakar Dhara

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar Das

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge