Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarthak Mandal is active.

Publication


Featured researches published by Sarthak Mandal.


Langmuir | 2013

Spontaneous Transition of Micelle–Vesicle–Micelle in a Mixture of Cationic Surfactant and Anionic Surfactant-like Ionic Liquid: A Pure Nonlipid Small Unilamellar Vesicular Template Used for Solvent and Rotational Relaxation Study

Surajit Ghosh; Chiranjib Ghatak; Chiranjib Banerjee; Sarthak Mandal; Jagannath Kuchlyan; Nilmoni Sarkar

The micelle-vesicle-micelle transition in aqueous mixtures of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the anionic surfactant-like ionic liquid 1-butyl-3-methylimidazolium octyl sulfate, [C4mim][C8SO4] has been investigated by using dynamic light scattering (DLS), transmission electron microscopy (TEM), surface tension, conductivity, and fluorescence anisotropy at different volume fractions of surfactant. The surface tension value decreases sharply with increasing CTAB concentration up to ∼0.38 volume fraction and again increases up to ∼0.75 volume fraction of CTAB. Depending upon their relative amount, these surfactants either mixed together to form vesicles and/or micelles, or both of these structures were in equilibrium. Fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), incorporated in this system at different composition of surfactant indicates the formation of micelle and vesicle structures. The apparent hydrodynamic diameter of these large multilamellar vesicles is about ∼200 nm-300 nm obtained by DLS measurement and finally confirmed by TEM micrographs. The large multilamellar vesicles are transformed into small unilamellar ones by sonication using a Lab-line instruments probe sonicator with a diameter of ∼90-125 nm. To investigate the heterogeneity, solvent, and rotational relaxation of coumarin-153 (C-153) have been investigated in these unilamellar vesicles by using picosecond time-resolved fluorescence spectroscopic technique. The solvation dynamics of C-153 in these vesicles is found to be biexponential with average time constant ∼580 ps. This indicates the slow relaxation of water molecules in the surfactant bilayer. In accordance with solvation dynamics, fluorescence anisotropy analysis of C-153 in unilamellar vesicles also indicates hindered rotation compared to bulk water.


Journal of Physical Chemistry B | 2013

Modulation of the Photophysical Properties of Curcumin in Nonionic Surfactant (Tween-20) Forming Micelles and Niosomes: A Comparative Study of Different Microenvironments

Sarthak Mandal; Chiranjib Banerjee; Surajit Ghosh; Jagannath Kuchlyan; Nilmoni Sarkar

The modulation of the photophysical properties of curcumin inside two different types of microenvironments provided by nonionic surfactant forming micelles and vesicles (niosomes) has been investigated using steady state and time-resolved fluorescence spectroscopy. The formation of small unilamellar Tween-20/cholesterol niosomes with narrow size distribution has been successfully demonstrated by means of dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques. Our results indicate that niosomes are a better possible delivery system than the conventional surfactants forming normal micelles to suppress the level of degradation of curcumin. The enhanced fluorescence intensity along with the significant blue-shift in the emission maxima of curcumin upon encapsulation into the hydrophobic microenvironments of micelles and niosomes is a consequence of the reduced interaction of curcumin with the water molecules. We found that the more rigid and confined microenvironment of niosomes enhances the steady state fluorescence intensity along with the fluorescence lifetime of curcumin more than in micelles. The rigidity of the niosome membrane which arises basically due to the presence of cholesterol molecules increases the level of interaction between curcumin and the oxoethylene units of Tween-20 molecules. It is also possible for the hydroxyl groups of the cholesterol moieties to form intermolecular hydrogen bonds with curcumin to perturb nonradiative deactivation mechanism through excited state intramolecular hydrogen atom transfer (ESIHT).


Journal of Physical Chemistry B | 2012

Designing a New Strategy for the Formation of IL-in-Oil Microemulsions

Vishal Govind Rao; Surajit Ghosh; Chiranjib Ghatak; Sarthak Mandal; Udita Brahmachari; Nilmoni Sarkar

Due to the increasing applicability of ionic liquids (ILs) as different components of microemulsions (as the polar liquid, the oil phase, and the surfactant), it would be advantageous to devise a strategy by which we can formulate a microemulsion of our own interest. In this paper, we have shown how we can replace water from water-in-oil microemulsions by ILs to produce IL-in-oil microemulsions. We have synthesized AOT-derived surface-active ionic liquids (SAILs) which can be used to produce a large number of IL-in-oil microemulsions. In particular, we have characterized the phase diagram of the [C(4)mim][BF(4)]/[C(4)mim][AOT]/benzene ternary system at 298 K. We have shown the formation of IL-in-oil microemulsions using the dynamic light scattering (DLS) technique and using methyl orange (MO), betaine 30, and coumarin-480 (C-480) as probe molecules.


Journal of Physical Chemistry B | 2012

An Understanding of the Modulation of Photophysical Properties of Curcumin inside a Micelle Formed by an Ionic Liquid: A New Possibility of Tunable Drug Delivery System

Chiranjib Ghatak; Vishal Govind Rao; Sarthak Mandal; Surajit Ghosh; Nilmoni Sarkar

The present study reveals the modulation of photophysical properties of curcumin, an important drug for numerous reasons, inside a micellar environment formed by a surfactant-like ionic liquid (IL-micelle) in aqueous solution. Higher stability of the drug inside IL-micelle in the absence and presence of a simple salt (sodium chloride) as well as considerably large partition coefficient (K(p) = 8.59 × 10(3)) to the micellar phase from water make this system a well behaved drug loading vehicle. Remarkable change in fluorescence intensity with a strong blue-shift implies the gradual perturbation of intramolecular hydrogen bond (H-bond) present within the keto-enol group of curcumin along with considerable formation of intermolecular H-bond between curcumin and the headgroup of surfactant-like IL. Very fast nonradiative decay channels in curcumin mainly caused by the excited state intramolecular proton transfer (ESIPT) are thus depleted remarkably in the presence of IL-micelle of reduced polarity and as a result of restricted rotational and vibrational degrees of freedom when bound to the micelle. Moreover, time-resolved results confirm that not only the keto-enol group of curcumin is playing here but also the phenolic hydroxyl groups are also responsible for such modulation in photophysical properties. From a thermodynamic point of view, our system shows good correlation with its stability parameters (higher binding constant with very less hydrolytic degradation rate ~1%) and higher negative value of binding enthalpy of interaction (-ΔH) than total free energy change (-ΔG) implies that the nature of binding interaction is enthalpy driven not entropy alone. Summarizing all the above observations, we have concluded that the modulation of the intramolecular proton transfer is due to the presence of both intermolecular proton transfer as well as strong hydrophobic interaction between curcumin and the IL-micelle.


Journal of Physical Chemistry B | 2014

Vesicles Formed in Aqueous Mixtures of Cholesterol and Imidazolium Surface Active Ionic Liquid: A Comparison with Common Cationic Surfactant by Water Dynamics

Sarthak Mandal; Jagannath Kuchlyan; Surajit Ghosh; Chiranjib Banerjee; Niloy Kundu; Debasis Banik; Nilmoni Sarkar

The formation of stable unilamellar vesicles which hold great potential for biological as well as biomedical applications has been reported in the aqueous mixed solution of a surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) and cholesterol. To make a comparison we have also shown the formation of such stable vesicles using a common cationic surfactant, benzyldimethylhexadecylammonium chloride (BHDC) which has a similar alkyl chain length but different headgroup region to that of [C16mim]Cl. It has been revealed from dynamic light scattering (DLS), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), and other optical spectroscopic techniques that the micelles of [C16mim]Cl and BHDC in aqueous solutions transform into stable unilamellar vesicles upon increasing concentration of cholesterol. We find that, as the concentration of cholesterol increases, the solvation and rotational relaxation time of C153 in [C16mim]Cl/cholesterol solution as well as in BHDC/cholesterol solution gradually increases indicating a significant decrease in the hydration behavior around the self-assemblies upon micelle-vesicle transition. However, the extent of increase in solvation and rotational relaxation time is more prominent in the case of [C16mim]Cl/cholesterol solutions than in the BHDC/cholesterol system. This indicates that [C16mim]Cl/cholesterol vesicular membranes are comparatively less hydrated and more rigid than the BHDC/cholesterol vesicular bilayer.


Journal of Physical Chemistry B | 2011

Ionic liquid-induced changes in properties of aqueous cetyltrimethylammonium bromide: a comparative study of two protic ionic liquids with different anions.

Vishal Govind Rao; Chiranjib Ghatak; Surajit Ghosh; Rajib Pramanik; Souravi Sarkar; Sarthak Mandal; Nilmoni Sarkar

In this work we have shown a comparative study of changes in physicochemical properties of an aqueous solution of a common cationic surfactant cetyltrimethylammonium bromide (CTAB) upon addition of two protic ionic liquids N,N-dimethylethanolammonium [corrected] hexanoate (DAH) and N,N-dimethylethanolammonium [corrected] formate (DAF). The aim of this manuscript is to offer a comparative study and establish the role of the alkyl chain length of the anion of the added protic ionic liquids on the physicochemical properties of aqueous solution of CTAB. At lower concentration (i.e., ≤ 30 mM) both ionic liquids show the same trend in modifying the properties of aqueous CTAB solution, but DAH as an additive shows a more dramatic increase in aggregation number and size of the CTAB micelle compared to that of DAF as an additive. At higher concentrations of additives (DAF and DAH), the properties of aqueous CTAB solution change in an entirely different way. The size of the CTAB micelle was found to be 0.9 nm. With the addition of 215 mM DAH, the size of the CTAB micelle increases to 25.0 nm, whereas with the addition of 215 mM DAF it increases to only 5.6 nm. Zeta potential, electrical conductance, microviscosity, and dipolarity measurements were performed to gain insight into this abrupt size change in the case of DAH. It is proposed that the formate and hexanoate anions undergo Coulombic attractive interaction with cationic head groups of the CTAB micelle at all concentrations. In the case of DAH, the presence of a hexyl chain on the hexanoate ion allows it to align with the tail part of CTAB, whereas in the case of DAF the absence of an alkyl chain in the formate ion is apparently unable to align the formate anion with the tail part of CTAB. So this difference in the location of the anions of DAF and DAH is responsible for the different size changes and different behaviors of the two ionic liquids.


Journal of Physical Chemistry B | 2013

A Step toward the Development of High-Temperature Stable Ionic Liquid-in-Oil Microemulsions Containing Double-Chain Anionic Surface Active Ionic Liquid

Vishal Govind Rao; Chiranjib Banerjee; Surajit Ghosh; Sarthak Mandal; Jagannath Kuchlyan; Nilmoni Sarkar

Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.


Journal of Physical Chemistry B | 2013

An Investigation into the Effect of the Structure of Bile Salt Aggregates on the Binding Interactions and ESIHT Dynamics of Curcumin: A Photophysical Approach To Probe Bile Salt Aggregates as a Potential Drug Carrier

Sarthak Mandal; Surajit Ghosh; Debasis Banik; Chiranjib Banerjee; Jagannath Kuchlyan; Nilmoni Sarkar

This work demonstrates the utilization of bile salt aggregates as a potential biological host system for studying the binding interactions and dynamics of the poorly-water-soluble drug curcumin by means of photophysical techniques. We found that the level of degradation of curcumin is greatly suppressed upon encapsulation into the nanocavities of three different bile salt aggregates. However, NaTC aggregates are more effective to suppress the level of degradation of curcumin than NaCh and NaDC aggregates. We also report the modulation of the photophysical and dynamical properties of curcumin into the nanocavities of bile salt aggregates using steady-state and time-resolved fluorescence spectroscopy. The reduced level of interaction of curcumin with water upon incorporation into the different binding sites of bile salt aggregates results in an enhanced fluorescence intensity along with the blue shift in the emission maxima of curcumin. However, the observation of higher fluorescence quantum yield as well as longer fluorescence lifetime in NaTC aggregates compared to that in NaCh and NaDC aggregates clearly indicates a more effective decrease in the excited-state intramolecular hydrogen atom transfer (ESIHT) mediated nonradiative deactivation of curcumin by the interaction with the anionic headgroup of NaTC. The binding and location of curcumin into the bile salt aggregates has been further confirmed from the steady-state fluorescence anisotropy measurements. In addition, we have shown the effect of addition of salt on the photophysical properties of curcumin in the confined environments of bile salt aggregates. Our results indicate that on addition of salt the time scale of ESIHT process of curcumin in bile salt aggregates is markedly increased.


Journal of Physical Chemistry B | 2013

Phase Boundaries, Structural Characteristics, and NMR Spectra of Ionic Liquid-in-Oil Microemulsions Containing Double Chain Surface Active Ionic Liquid: A Comparative Study

Vishal Govind Rao; Sarthak Mandal; Surajit Ghosh; Chiranjib Banerjee; Nilmoni Sarkar

A method developed for the first time, to create a huge number of ionic liquid (IL)-in-oil microemulsions has been discussed in our earlier publication (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B 2012, 116, 2850-2855). Here, we present facile methods to adjust the structural parameters of microemulsions using different ionic liquids (ILs) as additives (polar phase). We have characterized ILs/[C(4)mim][AOT]/benzene ternary system by performing a phase behavior study, dynamic light scattering (DLS) measurements, and (1)H NMR measurements. The IL loading capacity of microemulsions (area of single phase region) (i) increases with increase in alkyl chain length of cation of ILs and follows the trend [C(6)mim][TF(2)N] > [C(4)mim][TF(2)N] > [C(2)mim][TF(2)N], (ii) increases with decrease in cation anion interaction strength of added ILs and follows the trend [C(4)mim][TF(2)N] > [C(4)mim][PF(6)] > [C(4)mim][BF(4)]. So depending on the IL used, the amount of IL within the core of microemulsions can be easily manipulated to directly affect the size of aggregates in microemulsions. The size increase with increasing R value (R value is defined as the molar ratio of RTILs to [C(4)mim][AOT]) was found to be maximum in the case of [C(2)mim][TF(2)N]/[C(4)mim][AOT]/benzene microemulsions and follows the trend [C(2)mim][TF(2)N] > [C(4)mim][TF(2)N] > [C(6)mim][TF(2)N]. However, the size increase was almost the same with increase in R value in the case of ILs with different anions. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions, so we investigated the effect of temperature on size of aggregates in microemulsions at R = 1.0. It is evident from dynamic light scattering measurements that the aggregates in microemulsions remain monodisperse in nature with increasing temperature, and in all the cases, the size of aggregates in microemulsions decreases with increasing temperature. The effect of water addition on IL-in-oil (IL/O) microemulsions was also studied in detail. By far, this is the first report where the effect of water addition on microemulsions containing hydrophobic ILs is being reported and compared with microemulsions containing hydrophilic ILs. We observed that the added water has a prominent effect on the microstructure of the microemulsions. In all the cases, (1)H NMR spectra provide more detailed information about intra/intermolecular interactions thus affording a clear picture of locations of (i) the RTILs in RTILs/[C(4)mim][AOT]/benzene microemulsions and (ii) the added water molecules in microemulsions.


Journal of Physical Chemistry B | 2012

Ionic Liquid-in-Oil Microemulsions Composed of Double Chain Surface Active Ionic Liquid as a Surfactant: Temperature Dependent Solvent and Rotational Relaxation Dynamics of Coumarin-153 in [Py][TF2N]/[C4mim][AOT]/Benzene Microemulsions

Vishal Govind Rao; Sarthak Mandal; Surajit Ghosh; Chiranjib Banerjee; Nilmoni Sarkar

In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized for performing chemical reactions, preparation of nanomaterials, and synthesis of nanostructured polymers and in drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. In our earlier publication (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B 2012, 116, 2850-2855), we presented for the first time the possibility of creating huge number of IL-in-oil microemulsions, just by replacing the inorganic cation, Na(+), of NaAOT by any organic cation and using different ionic liquids as the polar core. In this manuscript we are interested in exploring the effect of temperature on such systems. We have characterized the phase diagram of the [Py][TF2N]/[C4mim][AOT]/benzene ternary system at 298 K. We have shown that in the experimental temperature range employed in this study, the microemulsions remain stable and a slight decrease in the size of the microemulsions is observed with increasing temperature. We have reported the detailed study of solvent and rotational relaxation of coumarin 153 (C-153) in neat IL, N-methyl-N-propylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide ([Py][TF2N]), and in [Py][TF2N]/[C4mim][AOT]/benzene microemulsions using steady state and picosecond time-resolved spectroscopy. We have monitored the effect of (i) varying the [Py][TF2N]/[C4mim][AOT] molar ratio (R value) and (ii) temperature on solvent and rotational relaxation of C-153. The features observed in absorption and emission spectra clearly indicate that (i) the probe molecules reside at the polar interfacial region of the [Py][TF2N]/[C4mim][AOT]/benzene microemulsions and (ii) with increasing R value the probe molecules move toward the polar IL-pool of the microemulsion. We have shown that the increase in solvation time on going from neat [Py][TF2N] to [Py][TF2N]-containing microemulsions is very small compared to the increase in solvation time on going from pure water to water-containing microemulsions. The average solvation time decreases with increasing R values at 298 K, but it shows only a small R dependence compared to microemulsions containing solvents capable of forming hydrogen bonds. We have also shown that the temperature has substantial effect on the solvent and rotational relaxation of C-153 in neat [Py][TF2N] compared to that of [Py][TF2N]/[C4mim][AOT]/benzene microemulsions at R = 0.69.

Collaboration


Dive into the Sarthak Mandal's collaboration.

Top Co-Authors

Avatar

Nilmoni Sarkar

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Surajit Ghosh

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Chiranjib Banerjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Vishal Govind Rao

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Chiranjib Ghatak

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Jagannath Kuchlyan

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Souravi Sarkar

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Rajib Pramanik

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Debasis Banik

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Niloy Kundu

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge