Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jahir Orozco is active.

Publication


Featured researches published by Jahir Orozco.


Journal of the American Chemical Society | 2011

Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes

Wei Gao; Sirilak Sattayasamitsathit; Jahir Orozco; Joseph Wang

Highly efficient catalytic microtubular engines are synthesized rapidly and inexpensively using an electrochemical growth of bilayer polyaniline/platinum microtubes within the conically shaped pores of a polycarbonate template membrane. These mass-produced microtubular engines are only 8 μm long, are self-propelled at an ultrafast speed (of over 350 body lengths s(-1)), and can operate in very low levels of the hydrogen peroxide fuel (down to 0.2%). The propulsion characteristics and optimization of these microtubular engines are described, along with their efficient operation in different biological environments which holds great promise for biomedical applications.


ACS Nano | 2012

Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil

Maria Guix; Jahir Orozco; Miguel García; Wei Gao; Sirilak Sattayasamitsathit; Arben Merkoçi; Alberto Escarpa; Joseph Wang

We demonstrate the use of artificial nanomachines for effective interaction, capture, transport, and removal of oil droplets. The simple nanomachine-enabled oil collection method is based on modifying microtube engines with a superhydrophobic layer able to adsorb oil by means of its strong adhesion to a long chain of self-assembled monolayers (SAMs) of alkanethiols created on the rough gold outer surface of the device. The resultant SAM-coated Au/Ni/PEDOT/Pt microsubmarine displays continuous interaction with large oil droplets and is capable of loading and transporting multiple small oil droplets. The influence of the alkanethiol chain length, polarity, and head functional group and hence of the surface hydrophobicity upon the oil-nanomotor interaction and the propulsion is examined. No such oil-motor interactions were observed in control experiments involving both unmodified microengines and microengines coated with SAM layers containing a polar terminal group. These results demonstrate that such SAM-Au/Ni/PEDOT/Pt micromachines can be useful for a facile, rapid, and efficient collection of oils in water samples, which can be potentially exploited for other water-oil separation systems. The integration of oil-sorption properties into self-propelled microengines holds great promise for the remediation of oil-contaminated water samples and for the isolation of other hydrophobic targets, such as drugs.


Nano Letters | 2012

Bacterial Isolation by Lectin-Modified Microengines

Susana Campuzano; Jahir Orozco; Daniel Kagan; Maria Guix; Wei Gao; Sirilak Sattayasamitsathit; Jonathan C. Claussen; Arben Merkoçi; Joseph Wang

New template-based self-propelled gold/nickel/polyaniline/platinum (Au/Ni/PANI/Pt) microtubular engines, functionalized with the Concanavalin A (ConA) lectin bioreceptor, are shown to be extremely useful for the rapid, real-time isolation of Escherichia coli (E. coli) bacteria from fuel-enhanced environmental, food, and clinical samples. These multifunctional microtube engines combine the selective capture of E. coli with the uptake of polymeric drug-carrier particles to provide an attractive motion-based theranostics strategy. Triggered release of the captured bacteria is demonstrated by movement through a low-pH glycine-based dissociation solution. The smaller size of the new polymer-metal microengines offers convenient, direct, and label-free optical visualization of the captured bacteria and discrimination against nontarget cells.


ACS Nano | 2013

Artificial Enzyme-Powered Microfish for Water-Quality Testing

Jahir Orozco; Victor Garcia-Gradilla; Mattia D’Agostino; Wei Gao; Allan Cortés; Joseph Wang

We present a novel micromotor-based strategy for water-quality testing based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants. The new micromotor toxicity testing concept mimics live-fish water testing and relies on the toxin-induced inhibition of the enzyme catalase, responsible for the biocatalytic bubble propulsion of tubular microengines. The locomotion and survival of the artificial microfish are thus impaired by exposure to a broad range of contaminants, that lead to distinct time-dependent irreversible losses in the catalase activity, and hence of the propulsion behavior. Such use of enzyme-powered biocompatible polymeric (PEDOT)/Au-catalase tubular microengine offers highly sensitive direct optical visualization of changes in the swimming behavior in the presence of common contaminants and hence to a direct real-time assessment of the water quality. Quantitative data on the adverse effects of the various toxins upon the swimming behavior of the enzyme-powered artificial swimmer are obtained by estimating common ecotoxicological parameters, including the EC(50) (exposure concentration causing 50% attenuation of the microfish locomotion) and the swimmer survival time (lifetime expectancy). Such novel use of artificial microfish addresses major standardization and reproducibility problems as well as ethical concerns associated with live-fish toxicity assays and hence offers an attractive alternative to the common use of aquatic organisms for water-quality testing.


Small | 2013

Multi-Fuel Driven Janus Micromotors

Wei Gao; Mattia D'Agostino; Victor Garcia-Gradilla; Jahir Orozco; Joseph Wang

Here the first example of a chemically powered micromotor that harvests its energy from the reactions of three different fuels is presented. The new Al/Pd Janus microspheres-prepared by depositing a Pd layer on one side of Al microparticles-are propelled efficiently by the thrust of hydrogen bubbles generated from different reactions of Al in strong acidic and alkaline environments, and by an oxygen bubble thrust produced at their partial Pd coating in hydrogen peroxide media. High speeds and long lifetimes of 200 μm s(-1) and 8 min are achieved in strong alkaline media and acidic media, respectively. The ability to autonomously adapt to the presence of a new fuel (surrounding environment), without compromising the propulsion behavior is illustrated. These data also represent the first example of a chemically powered micromotor that propels autonomously and efficiently in alkaline environments (pH > 11) without additional fuels. The ability to use multiple fuel sources to power the same micromotor offers a broader scope of operation and considerable promise for diverse applications of micromotors in different chemical environments.


Angewandte Chemie | 2013

Micromotor‐Based High‐Yielding Fast Oxidative Detoxification of Chemical Threats

Jahir Orozco; Guanzhi Cheng; Diana Vilela; Sirilak Sattayasamitsathit; Rafael Vazquez-Duhalt; Gabriela Valdés-Ramírez; Alberto Escarpa; Chengyou Kan; Joseph Wang

Rapid field conversion of chemical weapons into non-toxic products is one of the most challenging tasks in weapons of mass destruction (WMD) science. This is particularly the case for eliminating stockpiles of chemical warfare agents (CWAs) in remote storage field locations, where the use of large quantities of decontaminating reagents, long reaction times, and controlled mechanical agitation is impossible or undesired. New efficient “clean” technologies and (bio)chemical processes are thus sought for detoxifying stored agents, counteracting nerve-agent attacks, and decommissioning chemical weapons. Environmentally friendly solutions of hydrogen peroxide, combined with suitable activators (e.g., bicarbonate), have been shown to be extremely useful for decontaminating a broad spectrum of CWAs to yield nontoxic products. These peroxide-based systems, which rely on the in situ generation of OOH nucleophiles, have recently replaced chlorine-based bleaching processes, which produce undesirable products, and have thus led to effective decontamination of the chemical agents GB (Sarin, isopropyl methylphosphonofluoridate), VX ((S)-[2-(diisopropylamino)ethyl] O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (sulfur mustard). Yet, such an oxidative treatment commonly requires high peroxide concentrations (20–30%; approaching a stoichiometry of 1:50), along with prolonged operation and/or mechanical agitation. Such reaction conditions are not suitable or not desired for eliminating stockpiles of CWAs in remote field settings or hostile storage locations, as large quantities of the reagents may not be transportable on military aircrafts and require special packaging and handling. The efficient elimination of chemical-weapon stockpiles in field locations thus remains a major challenge to the chemistry and defense communities. Herein, we describe a powerful strategy that is based on self-propelled micromotors, for a high-yielding accelerated oxidative decontamination of chemical threats using low peroxide levels and no external agitation. Functionalized synthetic micromotors have recently demonstrated remarkable capabilities in terms of isolation and transport for diverse biomedical and environmental applications, but not in connection to increasing the yield and speed of chemical reactions. The new motor-based method relies on the use of peroxide-driven microtubular engines for the efficient selfmixing of a remediation solution, which dramatically accelerates the decontamination process. Fluid mixing is extremely important for enhancing the yield and speed of a wide range of chemical processes, including decontamination reactions, where quiescent conditions lead to low reaction efficiency and long operations. The observed mixing, which is induced by the peroxide-driven micromotor, is analogous to that reported for the motility of E. coli bacteria, where a large-scale collective motion has been shown to enhance diffusion processes. Enhanced diffusion of passive tracers has also been observed in the presence of catalytic nanowire motors. Although the new micromotor strategy presented herein was applied to the accelerated, high-yielding, and simplified decontamination of organophosphate (OP) nerve agents, the concept could have broad implications for enhancing the efficiency and speed of a wide range of chemical processes in the absence of external agitation. The concept of the micromotor/peroxide-based decontamination of chemical threats is illustrated in Figure 1. This new strategy relies on micromotors without mechanical stirring (Figure 1A). A known number of micromotors were placed in a nerve-agent-contaminated solution, along with hydrogen peroxide (used as the oxidizing agent as well as the micromotor fuel), the peroxide activator (NaHCO3 or NaOH), and the surfactant sodium cholate (NaCh), which was essential for bubble generation. The oxidative conversion of the OP nerve agent into para-nitrophenol (p-NP) was achieved under mild quiescent conditions that involve the in situ generation of OOH nucleophiles with no external stirring (Figure 1B). The decrease in concentration of the OP [*] Dr. J. Orozco, G. Cheng, D. Vilela, Dr. S. Sattayasamitsathit, Prof. R. Vazquez-Duhalt, Dr. G. Vald s-Ram rez, Dr. O. S. Pak, Prof. J. Wang Departments of Nanoengineering and Mechanical Engineering University of California San Diego La Jolla, CA 92093 (USA) E-mail: [email protected] G. Cheng, Prof. C. Kan Tsinghua University, Beijing, 100084 (China) D. Vilela, Prof. A. Escarpa University of Alcal 28871 Alcal de Henares (Spain)


Analytical Chemistry | 2011

Dynamic Isolation and Unloading of Target Proteins by Aptamer-Modified Microtransporters

Jahir Orozco; Susana Campuzano; Daniel Kagan; Ming Zhou; Wei Gao; Joseph Wang

We describe here a new strategy for isolating target proteins from complex biological samples based on an aptamer-modified self-propelled microtube engine. For this purpose, a thiolated thrombin or a mixed thrombin-ATP aptamer (prehybridized with a thiolated short DNA) was coassembled with mercaptohexanol onto the gold surface of these microtube engines. The rapid movement of the aptamer-modified microtransporter resulted in highly selective and rapid capture of the target thrombin, with an effective discrimination against a large excess of nontarget proteins. Release of the captured thrombin can be triggered by the addition of ATP that can bind and displace the immobilized mixed thrombin-ATP aptamer in 20 min. The rapid loading and unloading abilities demonstrated by these selective microtransporters are illustrated in complex matrixes such as human serum and plasma. The new motion-driven protein isolation platform represents a new approach in bioanalytical chemistry based on active transport of proteins and offers considerable promise for diverse diagnostic applications.


Sensors | 2009

ISFET Based Microsensors for Environmental Monitoring

Cecilia Jiménez-Jorquera; Jahir Orozco; Antoni Baldi

The use of microsensors for in-field monitoring of environmental parameters is gaining interest due to their advantages over conventional sensors. Among them microsensors based on semiconductor technology offer additional advantages such as small size, robustness, low output impedance and rapid response. Besides, the technology used allows integration of circuitry and multiple sensors in the same substrate and accordingly they can be implemented in compact probes for particular applications e.g., in situ monitoring and/or on-line measurements. In the field of microsensors for environmental applications, Ion Selective Field Effect Transistors (ISFETs) have a special interest. They are particularly helpful for measuring pH and other ions in small volumes and they can be integrated in compact flow cells for continuous measurements. In this paper the technologies used to fabricate ISFETs and a review of the role of ISFETs in the environmental field are presented.


Langmuir | 2014

Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers

Jahir Orozco; Beatriz Jurado-Sánchez; Gregory L. Wagner; Wei Gao; Rafael Vazquez-Duhalt; Sirilak Sattayasamitsathit; Michael Galarnyk; Allan Cortés; David Saintillan; Joseph Wang

Fluid convection and mixing induced by bubble-propelled tubular microengines are characterized using passive microsphere tracers. Enhanced transport of the passive tracers by bubble-propelled micromotors, indicated by their mean squared displacement (MSD), is dramatically larger than that observed in the presence of catalytic nanowires and Janus particle motors. Bubble generation is shown to play a dominant role in the effective fluid transport observed in the presence of tubular microengines. These findings further support the potential of using bubble-propelled microengines for mixing reagents and accelerating reaction rates. The study offers useful insights toward understanding the role of the motion of multiple micromotors, bubble generation, and additional factors (e.g., motor density and fuel concentration) upon the observed motor-induced fluid transport.


Journal of Materials Chemistry | 2016

Graphene-based Janus micromotors for the dynamic removal of pollutants

Jahir Orozco; Luiza A. Mercante; Roberto Pol; Arben Merkoçi

Persistent organic pollutants (POPs) are ubiquitous in the environment as a result of modern industrial processes. We present an effective POPs decontamination strategy based on their dynamic adsorption at the surface of reduced graphene oxide (rGO)-coated silica (SiO2)–Pt Janus magnetic micromotors for their appropriate final disposition. While the motors rapidly move in a contaminated solution, the adsorption of POPs efficiently takes place in a very short time. Characterization of the micromotors both from the materials and from the motion point of view was performed. Polybrominated diphenyl ethers (PBDEs) and 5-chloro-2-(2,4-dichlorophenoxy) phenol (triclosan) were chosen as model POPs and the removal of the contaminants was efficiently achieved. The rGO-coated micromotors demonstrated superior adsorbent properties with respect to their concomitant GO-coated micromotors, static rGO-coated particles and dynamic silica micromotors counterparts. The extent of decontamination was studied over the number of micromotors, whose magnetic properties were used for their collection from environmental samples. The adsorption properties were maintained for 4 cycles of micromotors reuse. The new rGO-coated SiO2 functional material-based micromotors showed outstanding capabilities towards the removal of POPs and their further disposition, opening up new possibilities for efficient environmental remediation of these hazardous compounds.

Collaboration


Dive into the Jahir Orozco's collaboration.

Top Co-Authors

Avatar

Joseph Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Gao

University of California

View shared research outputs
Top Co-Authors

Avatar

Cecilia Jiménez-Jorquera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

César Fernández-Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Arben Merkoçi

Catalan Institution for Research and Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuri Fedorak

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge