Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaime Alonso is active.

Publication


Featured researches published by Jaime Alonso.


Astronomical Telescopes and Instrumentation | 2003

MACAO-VLTI: an adaptive optics system for the ESO interferometer

Robin Arsenault; Jaime Alonso; Henri Bonnet; Joar Brynnel; Bernard Delabre; Robert Donaldson; Christophe Dupuy; Enrico Fedrigo; Jacopo Farinato; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Jerome Paufique; Silvio Rossi; Sebastien Tordo; Stefan Stroebele; J.-L. Lizon; Pierre Gigan; Francoise Delplancke; Armin Silber; Marco Quattri; Roland Reiss

MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLTs. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned for June 2003 and the last one for June 2004.


Astronomical Telescopes and Instrumentation | 2003

Installation and first results of FLAMES, the VLT multifibre facility

Luca Pasquini; Jaime Alonso; Gerardo Avila; Pablo Barriga; Peter Biereichel; Bernard Buzzoni; Cyril Cavadore; Claudio Cumani; Hans Dekker; Bernard Delabre; Andreas Kaufer; Heinz Kotzlowski; V. Hill; J.-L. Lizon; Walter Nees; P. Santin; Ricardo Schmutzer; Arno van Kesteren; M. Zoccali

FLAMES is the VLT Fibre Facility, installed and being commissioned at the Nasmyth A of UT2 (Kueyen Telescope). FLAMES has been built and assembled at the VLT telescope in about 4 years through an international collaboration between 10 institutes in 6 countries and 3 continents. It had first light with the fibre link to the red arm of UVES on April 1, and with the GIRAFFE spectrograph on July 3. We have not yet enough data to compare the observed vs. expected astronomical performances, although these first data are encouraging in many respects. We aim at proceeding soon with the remaining tests


Proceedings of SPIE | 2010

The Very Large Telescope Interferometer: 2010 edition

Pierre Haguenauer; Jaime Alonso; Pierre Bourget; S. Brillant; Philippe B. Gitton; Stephane Guisard; Sébastien Poupar; Nicolas Schuhler; Roberto Abuter; Luigi Andolfato; Guillaume Blanchard; Jean-Philippe Berger; Angela Cortes; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Andreas Glindemann; Serge Guniat; Gerhard Huedepohl; Andreas Kaufer; Jean-Baptiste Le Bouquin; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Andres Pino

The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community. New configurations of the ATs array are discussed with the science users of the VLTI and implemented to optimize the scientific return. The monitoring and improvement of the different systems of the VLTI is a continuous work. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments has been successfully installed and the commissioning is ongoing. The possibility for visiting instruments has been opened to the VLTI facility.


Proceedings of SPIE | 2008

The Very Large Telescope Interferometer: an update

Pierre Haguenauer; Roberto Abuter; Jaime Alonso; Javier Argomedo; Bertrand Bauvir; Guillaume Blanchard; Henri Bonnet; S. Brillant; Michael Cantzler; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Yves Durand; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Gerhard Hudepohl; Christian A. Hummel; Nathaniel Jesuran; Andreas Kaufer; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel A. Leveque; C. Lidman; Pedro Mardones; Serge Menardi

The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8 m Unit Telescopes (UT) and the four 1.8 m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The fourth AT has been delivered to operation in December 2006, increasing the flexibility and simultaneous baselines access of the VLTI. Regular science operations are now carried on with the two VLTI instruments, AMBER and MIDI. The FINITO fringe tracker is now used for both visitor and service observations with ATs and will be offered on UTs in October 2008, bringing thus the fringe tracking facility to VLTI instruments. In parallel to science observations, technical periods are also dedicated to the characterization of the VLTI environment, upgrades of the existing systems, and development of new facilities. We will describe the current status of the VLTI and prospects on future evolution.


Proceedings of SPIE | 2014

VLTI status update: a decade of operations and beyond

A. Mérand; Roberto Abuter; Emmanuel Aller-Carpentier; Luigi Andolfato; Jaime Alonso; Jean-Philippe Berger; Guillaume Blanchard; Henri M. J. Boffin; Pierre Bourget; Paul Bristow; Claudia Cid; Willem-Jan de Wit; Diego Del Valle; F. Delplancke-Ströbele; Frederic Derie; Lorena Faundez; Steve Ertel; Rebekka Grellmann; Philippe B. Gitton; Andreas Glindemann; Patricia Guajardo; S. Guieu; Stephane Guisard; Serge Guniat; Pierre Haguenauer; Cristian Herrera; Christian A. Hummel; Carlos La Fuente; Marcelo Lopez; Pedro Mardones

We present the latest update of the European Southern Observatorys Very Large Telescope interferometer (VLTI). The operations of VLTI have greatly improved in the past years: reduction of the execution time; better offering of telescopes configurations; improvements on AMBER limiting magnitudes; study of polarization effects and control for single mode fibres; fringe tracking real time data, etc. We present some of these improvements and also quantify the operational improvements using a performance metric. We take the opportunity of the first decade of operations to reflect on the VLTI community which is analyzed quantitatively and qualitatively. Finally, we present briefly the preparatory work for the arrival of the second generation instruments GRAVITY and MATISSE.


Proceedings of SPIE | 2012

The Very Large Telescope Interferometer v2012

Pierre Haguenauer; Roberto Abuter; Luigi Andolfato; Jaime Alonso; Guillaume Blanchard; Jean-Philippe Berger; Pierre Bourget; S. Brillant; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Philippe B. Gitton; J. C. González; Stephane Guisard; Serge Guniat; Gerhard Hudepohl; Andreas Kaufer; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Sébastien Poupar; Andres Ramirez; Claudio Reineiro; Sridharan Rengaswamy; Thomas Rivinius

The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community and increase sensitivity. New configurations of the ATs have been offered and are frequently discussed with the science users of the VLTI and implemented to optimize the scientific return. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments is being commissioned. The visitor instrument PIONIER is now fully operational and bringing imaging capability to the VLTI. The current status of the VLTI is described with successes and scientific results, and prospects on future evolution are presented.


Proceedings of SPIE | 2010

Status of the VLTI-UT performances wrt vibrations

Sébastien Poupar; Pierre Haguenauer; A. Mérand; Jaime Alonso; Pierre Bourget; S. Brillant; Roberto Castillo; Nicola Di Lieto; Jean-Louis Lizon; Philippe B. Gitton; Johannes Sahlmann; Nicolas Schuhler

The ESO Very Large Telescope Interferometer (VLTI) offers the unique access to the combination of the four 8-meter Unit Telescopes (UT) of Cerro Paranal. The quality of the scientific observations in interferometric mode is strongly related to the stability of the optical path difference (OPD) between the telescopes. Vibrations at the level of the telescopes and affecting the mirrors were shown to be an important source of perturbation for the OPD. ESO has thus started an important effort on the UTs and VLTI to tackle this effect. Active controls based on accelerometers and phase measurements have been developed to provide real-time correction of the variation of OPD introduced by vibrations. Systematic studies and measurement of the sources of vibration (instruments, wind, telescope altitude, ...) have been performed. Solutions to reduce the vibrations via design modification and/or new operation configurations are studied and implemented. To ensure good operational conditions, the levels of vibrations are regularly monitored to control any environmental change. This document will describe the modifications implemented and foreseen and give a status of the VLTI-UT vibrations evolution.


Proceedings of SPIE | 2012

Status of PRIMA for the VLTI: heading to astrometry

C. Schmid; Roberto Abuter; A. Mérand; J. Sahlmann; Jaime Alonso; Luigi Andolfato; G. van Belle; Francoise Delplancke; Frederic Derie; N. Di Lieto; R. Frahm; Ph. Gitton; N. Gomes; P. Haguenauer; B. Justen; Samuel A. Leveque; Serge Menardi; S. Morel; A. Müller; T. Phan Duc; Eszter Pozna; Andres Ramirez; Nicolas Schuhler; D. Segransan

The Phase Referenced Imaging and Micro Arcsecond Astrometry (PRIMA) facility for the Very Large Telescope Interferometer (VLTI), is being installed and tested in the observatory of Paranal. Since January 2011 the integration and individual testing of the different subsystem has come to a necessary minimum. At the same time the astrometric commissioning phase has begun. In this contribution we give an update on the status of the facility and present some highlights and difficulties on our way from first dual-feed fringe detection to first astrometric measurements. We focus on technical and operational aspects. In particular, within the context of the latter we are going to present a modified mode of operation that scans across the fringes. We will show that this mode, originally only intended for calibration purposes, facilitates the detection of dual-fringes.


Proceedings of SPIE | 2016

NAOMI: a low-order adaptive optics system for the VLT interferometer

F. Gonte; Jaime Alonso; Emmanuel Aller-Carpentier; Luigi Andolfato; Jean-Philippe Berger; Angela Cortes; F. Delplancke-Ströbele; R. Donaldson; Reinhold J. Dorn; Christophe Dupuy; Sebastian Egner; Stefan Huber; Norbert Hubin; Jean-Paul Kirchbauer; Miska Le Louarn; Paul Lilley; Paul Jolley; Alessandro Martis; Jerome Paufique; Luca Pasquini; J. Quentin; Robert Ridings; Javier Reyes; Pavel Shchkaturov; M. Suarez; Thanh Phan Duc; Guillermo Valdes; Julien Woillez; Jean-Baptiste Le Bouquin; Jean-Luc Beuzit

The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack– Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.


Proceedings of SPIE | 2016

VLT interferometer upgrade for the 2nd generation of interferometric instruments

F. Gonte; Julien Woillez; Nicolas Schuhler; Sebastian Egner; A. Mérand; José Antonio Abad; Sergio Abadie; Roberto Abuter; Margarita Acuña; F. Allouche; Jaime Alonso; Luigi Andolfalto; Pierre Antonelli; Gerardo Avila; Pablo Barriga; Juan Beltran; Jean-Philippe Berger; Carlos Bolados; Henri Bonnet; Pierre Bourget; Roland Brast; Paul Bristow; Luis Caniguante; Roberto Castillo; Ralf Conzelmann; Angela Cortes; Francoise Delplancke; Diego Del Valle; Frederic Derie; Álvaro Diaz

ESO is undertaking a large upgrade of the infrastructure on Cerro Paranal in order to integrate the 2nd generation of interferometric instruments Gravity and MATISSE, and increase its performance. This upgrade started mid 2014 with the construction of a service station for the Auxiliary Telescopes and will end with the implementation of the adaptive optics system for the Auxiliary telescope (NAOMI) in 2018. This upgrade has an impact on the infrastructure of the VLTI, as well as its sub-systems and scientific instruments.

Collaboration


Dive into the Jaime Alonso's collaboration.

Top Co-Authors

Avatar

A. Mérand

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Berger

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Nicolas Schuhler

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Pierre Bourget

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Christophe Dupuy

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Pierre Haguenauer

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Francoise Delplancke

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Frederic Derie

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Roberto Abuter

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

F. Gonte

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge