Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaime Davila is active.

Publication


Featured researches published by Jaime Davila.


Journal of Clinical Oncology | 2015

Inherited Mutations in 17 Breast Cancer Susceptibility Genes Among a Large Triple-Negative Breast Cancer Cohort Unselected for Family History of Breast Cancer

Fergus J. Couch; Steven N. Hart; Priyanka Sharma; Amanda Ewart Toland; Xianshu Wang; Penelope Miron; Janet E. Olson; Andrew K. Godwin; V. Shane Pankratz; Curtis Olswold; Seth W. Slettedahl; Emily Hallberg; Lucia Guidugli; Jaime Davila; Matthias W. Beckmann; Wolfgang Janni; Brigitte Rack; Arif B. Ekici; Dennis J. Slamon; Irene Konstantopoulou; Florentia Fostira; Athanassios Vratimos; George Fountzilas; Liisa M. Pelttari; William Tapper; Lorraine Durcan; Simon S. Cross; Robert Pilarski; Charles L. Shapiro; Jennifer R. Klemp

PURPOSE Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. PATIENTS AND METHODS Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. RESULTS Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. CONCLUSION Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2007

Fast and Practical Algorithms for Planted (l, d) Motif Search

Jaime Davila; Sudha Balla; Sanguthevar Rajasekaran

We consider the planted (I, d) motif search problem, which consists of finding a substring of length I that occurs in a set of input sequences {si,. ..,sn} with up to d errors, a problem that arises from the need to find transcription factor-binding sites in genomic information. We propose a sequence of practical algorithms, which start based on the ideas considered in PMS1. These algorithms are exact, have little space requirements, and are able to tackle challenging instances with bigger d, taking less time in the instances reported solved by exact algorithms. In particular, one of the proposed algorithms, PMSprune, is able to solve the challenging instances, such as (17, 6) and (19, 7), which were not previously reported as solved in the literature.


BMC Bioinformatics | 2014

MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing

Krishna R. Kalari; Asha Nair; Jaysheel D. Bhavsar; Daniel O’Brien; Jaime Davila; Matthew A Bockol; Jinfu Nie; Xiaojia Tang; Saurabh Baheti; Jay B Doughty; Sumit Middha; Hugues Sicotte; Aubrey E. Thompson; Yan W. Asmann; Jean-Pierre A. Kocher

BackgroundAlthough the costs of next generation sequencing technology have decreased over the past years, there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any genome.ResultsFor optimization of tools and parameters, MAP-RSeq was validated using both simulated and real datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of reads, gene expression assessment and exon read counting, identification of expressed single nucleotide variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes. Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of diseases for better diagnosis and treatment of patients.ConclusionsOur software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants, mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from http://bioinformaticstools.mayo.edu/research/maprseq/.


Hepatology | 2015

IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism.

Daisaku Yamada; Sumera Rizvi; Nataliya Razumilava; Steven F. Bronk; Jaime Davila; Mia D. Champion; Mitesh J. Borad; Jorge A. Bezerra; Xin Chen; Gregory J. Gores

Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified interleukin (IL)−1 family member, IL‐33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr‐AKT) and Yes‐associated protein. Intrabiliary instillation of the transposon–transposase complex was coupled with lobar bile duct ligation in C57BL/6 mice, followed by administration of IL‐33 for 3 consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL‐33 by 10 weeks but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (features of CCA) but were negative for HepPar1 (a marker of hepatocellular carcinoma). Substantive overlap with human CCA specimens was revealed by RNA profiling. Not only did IL‐33 induce IL‐6 expression by human cholangiocytes but it likely facilitated tumor development in vivo by an IL‐6–sensitive process as tumor development was significantly attenuated in Il‐6–/– male animals. Furthermore, tumor formation occurred at a similar rate when IL‐6 was substituted for IL‐33 in this model. Conclusion: The transposase‐mediated transduction of constitutively active AKT and Yes‐associated protein in the biliary epithelium coupled with lobar obstruction and IL‐33 administration results in the development of CCA with morphological and biochemical features of the human disease; this model highlights the role of inflammatory cytokines in CCA oncogenesis. (Hepatology 2015;61:1627–1642)


Journal of Biological Chemistry | 2015

RNA Toxicity and Missplicing in the Common Eye Disease Fuchs Endothelial Corneal Dystrophy

Jintang Du; Ross A. Aleff; Elisabetta Soragni; Krishna R. Kalari; Jinfu Nie; Xiaojia Tang; Jaime Davila; Jean-Pierre A. Kocher; Sanjay V. Patel; Joel M. Gottesfeld; Keith H. Baratz; Eric D. Wieben

Background: Expansion of intronic (CTG·CAG)n repeats in TCF4 is found in most Fuchs endothelial corneal dystrophy (FECD) patients. Results: RNA foci co-localizing with the splicing factor MBNL1 are found in FECD cells, and changes in mRNA splicing occur. Conclusion: Trinucleotide repeat expansion in FECD is associated with RNA focus formation and missplicing. Significance: RNA toxicity occurs in a disease affecting millions of patients. Fuchs endothelial corneal dystrophy (FECD) is an inherited degenerative disease that affects the internal endothelial cell monolayer of the cornea and can result in corneal edema and vision loss in severe cases. FECD affects ∼5% of middle-aged Caucasians in the United States and accounts for >14,000 corneal transplantations annually. Among the several genes and loci associated with FECD, the strongest association is with an intronic (CTG·CAG)n trinucleotide repeat expansion in the TCF4 gene, which is found in the majority of affected patients. Corneal endothelial cells from FECD patients harbor a poly(CUG)n RNA that can be visualized as RNA foci containing this condensed RNA and associated proteins. Similar to myotonic dystrophy type 1, the poly(CUG)n RNA co-localizes with and sequesters the mRNA-splicing factor MBNL1, leading to missplicing of essential MBNL1-regulated mRNAs. Such foci and missplicing are not observed in similar cells from FECD patients who lack the repeat expansion. RNA-Seq splicing data from the corneal endothelia of FECD patients and controls reveal hundreds of differential alternative splicing events. These include events previously characterized in the context of myotonic dystrophy type 1 and epithelial-to-mesenchymal transition, as well as splicing changes in genes related to proposed mechanisms of FECD pathogenesis. We report the first instance of RNA toxicity and missplicing in a common non-neurological/neuromuscular disease associated with a repeat expansion. The FECD patient population with this (CTG·CAG)n trinucleotide repeat expansion exceeds that of the combined number of patients in all other microsatellite expansion disorders.


Scientific Reports | 2015

Clinical Characteristics of Ovarian Cancer Classified by BRCA1, BRCA2, and RAD51C Status

Julie M. Cunningham; Mine S. Cicek; Nicholas B. Larson; Jaime Davila; Chen Wang; Melissa C. Larson; Honglin Song; Ed Dicks; Patricia Harrington; Myra J. Wick; Boris Winterhoff; Habib Hamidi; Gottfried E. Konecny; Jeremy Chien; Marina Bibikova; Jian-Bing Fan; Kimberly R. Kalli; Noralane M. Lindor; Brooke L. Fridley; Paul Pharoah; Ellen L. Goode

We evaluated homologous recombination deficient (HRD) phenotypes in epithelial ovarian cancer (EOC) considering BRCA1, BRCA2, and RAD51C in a large well-annotated patient set. We evaluated EOC patients for germline deleterious mutations (n = 899), somatic mutations (n = 279) and epigenetic alterations (n = 482) in these genes using NGS and genome-wide methylation arrays. Deleterious germline mutations were identified in 32 (3.6%) patients for BRCA1, in 28 (3.1%) for BRCA2 and in 26 (2.9%) for RAD51C. Ten somatically sequenced patients had deleterious alterations, six (2.1%) in BRCA1 and four (1.4%) in BRCA2. Fifty two patients (10.8%) had methylated BRCA1 or RAD51C. HRD patients with germline or somatic alterations in any gene were more likely to be high grade serous, have an earlier diagnosis age and have ovarian and/or breast cancer family history. The HRD phenotype was most common in high grade serous EOC. Identification of EOC patients with an HRD phenotype may help tailor specific therapies.


international conference on computational science | 2006

Space and time efficient algorithms for planted motif search

Jaime Davila; Sudha Balla; Sanguthevar Rajasekaran

We consider the (l,d) Planted Motif Search Problem, a problem that arises from the need to find transcription factor-binding sites in genomic information. We propose the algorithms PMSi and PMSP which are based on ideas considered in PMS1 [10]. These algorithms are exact, make use of less space than the known exact algorithms such as PMS and are able to tackle instances with large values of d. In particular algorithm PMSP is able to solve the challenge instance (17,6), which has not reported solved before in the literature.


PLOS ONE | 2012

qPMS7: A Fast Algorithm for Finding (ℓ, d)-Motifs in DNA and Protein Sequences

Hieu Dinh; Sanguthevar Rajasekaran; Jaime Davila

Detection of rare events happening in a set of DNA/protein sequences could lead to new biological discoveries. One kind of such rare events is the presence of patterns called motifs in DNA/protein sequences. Finding motifs is a challenging problem since the general version of motif search has been proven to be intractable. Motifs discovery is an important problem in biology. For example, it is useful in the detection of transcription factor binding sites and transcriptional regulatory elements that are very crucial in understanding gene function, human disease, drug design, etc. Many versions of the motif search problem have been proposed in the literature. One such is the -motif search (or Planted Motif Search (PMS)). A generalized version of the PMS problem, namely, Quorum Planted Motif Search (qPMS), is shown to accurately model motifs in real data. However, solving the qPMS problem is an extremely difficult task because a special case of it, the PMS Problem, is already NP-hard, which means that any algorithm solving it can be expected to take exponential time in the worse case scenario. In this paper, we propose a novel algorithm named qPMS7 that tackles the qPMS problem on real data as well as challenging instances. Experimental results show that our Algorithm qPMS7 is on an average 5 times faster than the state-of-art algorithm. The executable program of Algorithm qPMS7 is freely available on the web at http://pms.engr.uconn.edu/downloads/qPMS7.zip. Our online motif discovery tools that use Algorithm qPMS7 are freely available at http://pms.engr.uconn.edu or http://motifsearch.com.


Genes, Chromosomes and Cancer | 2013

Novel TRAF1-ALK fusion identified by deep RNA sequencing of anaplastic large cell lymphoma.

Andrew L. Feldman; George Vasmatzis; Yan W. Asmann; Jaime Davila; Sumit Middha; Bruce W. Eckloff; Sarah H. Johnson; Julie C. Porcher; Stephen M. Ansell; Ariel J. Caride

Chromosomal translocations leading to expression of abnormal fusion proteins play a major role in the pathogenesis of various hematologic malignancies. The recent development of high‐throughput, “deep” sequencing has allowed discovery of novel translocations leading to a rapid increase in understanding these diseases. Translocations involving the anaplastic lymphoma kinase (ALK) gene leading to ALK fusion proteins originally were discovered in anaplastic large cell lymphomas (ALCLs). Among ALCLs, NPM1‐ALK fusions are most common and lead to nuclear localization of the fusion protein. Here, we present a 50‐year‐old male with ALCL demonstrating cytoplasmic ALK immunoreactivity only, suggesting the presence of a non‐NPM1 fusion partner. We performed deep RNA sequencing of tumor tissue from this patient and identified a novel transcript fusing Exon 6 of TRAF1 to Exon 20 of ALK. The TRAF1‐ALK fusion transcript was confirmed at the mRNA level by Sanger sequencing and the fusion protein was visualized by Western blot. The discovery of this TRAF1‐ALK fusion expands the diversity of known ALK fusion partners and highlights the power of deep sequencing for fusion transcript discovery.


DNA Research | 2013

Cytoplasmic Male Sterility-Associated Chimeric Open Reading Frames Identified by Mitochondrial Genome Sequencing of Four Cajanus Genotypes

Reetu Tuteja; Rachit K. Saxena; Jaime Davila; Trushar Shah; Wenbin Chen; Yongli Xiao; Guangyi Fan; K. B. Saxena; Andrew J. Alverson; Charles Spillane; Christopher D. Town; Rajeev K. Varshney

The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.

Collaboration


Dive into the Jaime Davila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudha Balla

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge