Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaime H. Cheah is active.

Publication


Featured researches published by Jaime H. Cheah.


Cell | 2014

Regulation of ferroptotic cancer cell death by GPX4.

Wan Seok Yang; Rohitha SriRamaratnam; Matthew Welsch; Kenichi Shimada; Rachid Skouta; Vasanthi Viswanathan; Jaime H. Cheah; Paul A. Clemons; Alykhan F. Shamji; Clary B. Clish; Lewis M. Brown; Albert W. Girotti; Virginia W. Cornish; Stuart L. Schreiber; Brent R. Stockwell

Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.


Cell | 2013

An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules

Amrita Basu; Nicole E. Bodycombe; Jaime H. Cheah; Edmund V. Price; Ke Liu; Giannina Ines Schaefer; Richard Yon Ebright; Michelle L. Stewart; Daisuke Ito; Stephanie Wang; Abigail L. Bracha; Ted Liefeld; Mathias J. Wawer; Joshua C. Gilbert; Andrew J. Wilson; Nicolas Stransky; Gregory V. Kryukov; Vlado Dančík; Jordi Barretina; Levi A. Garraway; C. Suk-Yee Hon; Benito Munoz; Joshua Bittker; Brent R. Stockwell; Dineo Khabele; Paul A. Clemons; Alykhan F. Shamji; Stuart L. Schreiber

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene β-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Cancer Discovery | 2015

Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset

Brinton Seashore-Ludlow; Matthew G. Rees; Jaime H. Cheah; Murat Cokol; Edmund V. Price; Matthew E. Coletti; Victor Victor Jones; Nicole E. Bodycombe; Christian K. Soule; Joshua Gould; Benjamin Alexander; Ava Li; Philip Montgomery; Mathias J. Wawer; Nurdan Kuru; Joanne Kotz; C. Suk-Yee Hon; Benito Munoz; Ted Liefeld; Vlado Dančík; Joshua Bittker; Michelle Palmer; James E. Bradner; Alykhan F. Shamji; Paul A. Clemons; Stuart L. Schreiber

UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.


Nature Chemical Biology | 2016

Correlating chemical sensitivity and basal gene expression reveals mechanism of action

Matthew G. Rees; Brinton Seashore-Ludlow; Jaime H. Cheah; Drew J. Adams; Edmund Price; Shubhroz Gill; Sarah Javaid; Matthew E. Coletti; Victor Victor Jones; Nicole E Bodycombe; Christian K. Soule; Benjamin Alexander; Ava Li; Philip Montgomery; Joanne Kotz; C. Suk-Yee Hon; Benito Munoz; Ted Liefeld; Vlado Dančík; Daniel A. Haber; Clary B. Clish; Joshua Bittker; Michelle Palmer; Bridget K. Wagner; Paul A. Clemons; Alykhan F. Shamji; Stuart L. Schreiber

Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ~19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters, and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.


ACS Chemical Biology | 2014

NAMPT Is the Cellular Target of STF-31-Like Small-Molecule Probes

Drew J. Adams; Daisuke Ito; Matthew G. Rees; Brinton Seashore-Ludlow; Xiaoling Puyang; Alex H. Ramos; Jaime H. Cheah; Paul A. Clemons; Markus Warmuth; Ping Zhu; Alykhan F. Shamji; Stuart L. Schreiber

The small-molecule probes STF-31 and its analogue compound 146 were discovered while searching for compounds that kill VHL-deficient renal cell carcinoma cell lines selectively and have been reported to act via direct inhibition of the glucose transporter GLUT1. We profiled the sensitivity of 679 cancer cell lines to STF-31 and found that the pattern of response is tightly correlated with sensitivity to three different inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). We also performed whole-exome next-generation sequencing of compound 146-resistant HCT116 clones and identified a recurrent NAMPT-H191R mutation. Ectopic expression of NAMPT-H191R conferred resistance to both STF-31 and compound 146 in cell lines. We further demonstrated that both STF-31 and compound 146 inhibit the enzymatic activity of NAMPT in a biochemical assay in vitro. Together, our cancer-cell profiling and genomic approaches identify NAMPT inhibition as a critical mechanism by which STF-31-like compounds inhibit cancer cells.


Nature Communications | 2016

A genetic basis for the variation in the vulnerability of cancer to DNA damage

B. Yard; Drew J. Adams; Eui Kyu Chie; Pablo Tamayo; Jessica S. Battaglia; Priyanka Gopal; Kevin Rogacki; Bradley E. Pearson; James G. Phillips; Daniel P. Raymond; Nathan A. Pennell; Francisco Almeida; Jaime H. Cheah; Paul A. Clemons; Alykhan F. Shamji; Craig D. Peacock; Stuart L. Schreiber; Peter S. Hammerman; M. Abazeed

Radiotherapy is not currently informed by the genetic composition of an individual patients tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages. We combine results from our platform with genomic features to identify parameters that predict radiation sensitivity. We identify somatic copy number alterations, gene mutations and the basal expression of individual genes and gene sets that correlate with the radiation survival, revealing new insights into the genetic basis of tumour cellular response to DNA damage. These results demonstrate the diversity of tumour cellular response to ionizing radiation and establish multiple lines of evidence that new genetic features regulating cellular response after DNA damage can be identified.


Nature Communications | 2016

Integrated genetic and pharmacologic interrogation of rare cancers

Andrew L. Hong; Yuen-Yi Tseng; Glenn S. Cowley; Oliver Jonas; Jaime H. Cheah; Bryan D. Kynnap; Mihir Doshi; Coyin Oh; Stephanie C. Meyer; Alanna Church; Shubhroz Gill; Craig M. Bielski; Paula Keskula; Alma Imamovic; Sara Howell; Gregory V. Kryukov; Paul A. Clemons; Aviad Tsherniak; Francisca Vazquez; Brian D. Crompton; Alykhan F. Shamji; Carlos Rodriguez-Galindo; Katherine A. Janeway; Charles W. M. Roberts; Kimberly Stegmaier; Paul Van Hummelen; Michael J. Cima; Robert Langer; Levi A. Garraway; Stuart L. Schreiber

Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers.


ACS Chemical Biology | 2016

Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects.

Florence F. Wagner; Joshua A. Bishop; Jennifer Gale; Xi Shi; Michelle Walk; Joshua Ketterman; Debasis Patnaik; Doug Barker; Deepika Walpita; Arthur J. Campbell; Shannon Nguyen; Michael C. Lewis; Linda Ross; Michel Weiwer; W. Frank An; Andrew Germain; Partha Nag; Shailesh R Metkar; Taner Kaya; Sivaraman Dandapani; David E. Olson; Anne-Laure Barbe; Fanny Lazzaro; Joshua R. Sacher; Jaime H. Cheah; David Fei; Jose R. Perez; Benito Munoz; Michelle Palmer; Kimberly Stegmaier

The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3s inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3β, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3β inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders.


Journal of the American Chemical Society | 2015

Discovery of a Small-Molecule Probe for V-ATPase Function

Leslie N. Aldrich; Szu Yu Kuo; Adam B. Castoreno; Gautam Goel; Petric Kuballa; Matthew G. Rees; Brinton Seashore-Ludlow; Jaime H. Cheah; Isabel Latorre; Stuart L. Schreiber; Alykhan F. Shamji; Ramnik J. Xavier

Lysosomes perform a critical cellular function as a site of degradation for diverse cargoes including proteins, organelles, and pathogens delivered through distinct pathways, and defects in lysosomal function have been implicated in a number of diseases. Recent studies have elucidated roles for the lysosome in the regulation of protein synthesis, metabolism, membrane integrity, and other processes involved in homeostasis. Complex small-molecule natural products have greatly contributed to the investigation of lysosomal function in cellular physiology. Here we report the discovery of a novel, small-molecule modulator of lysosomal acidification derived from diversity-oriented synthesis through high-content screening.


Biochemistry | 2018

A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production

Madeline Y. Wong; Ngoc Duc Doan; Andrew S. DiChiara; Louis J. Papa; Jaime H. Cheah; Christian K. Soule; Nicki Watson; John D. Hulleman; Matthew D. Shoulders

Collagen overproduction is a feature of fibrosis and cancer, while insufficient deposition of functional collagen molecules and/or the secretion of malformed collagen is common in genetic disorders like osteogenesis imperfecta. Collagen secretion is an appealing therapeutic target in these and other diseases, as secretion directly connects intracellular biosynthesis to collagen deposition and biological function in the extracellular matrix. However, small molecule and biological methods to tune collagen secretion are severely lacking. Their discovery could prove useful not only in the treatment of disease, but also in providing tools for better elucidating mechanisms of collagen biosynthesis. We developed a cell-based, high-throughput luminescent assay of collagen type I secretion and used it to screen for small molecules that selectively enhance or inhibit that process. Among several validated hits, the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) robustly decreases the secretion of collagen-I by our model cell line and by human primary cells. In these systems, 17-AAG and other pan-isoform Hsp90 inhibitors reduce collagen-I secretion post-translationally and are not global inhibitors of protein secretion. Surprisingly, the consequences of Hsp90 inhibitors cannot be attributed to inhibition of the endoplasmic reticulums Hsp90 isoform, Grp94. Instead, collagen-I secretion likely depends on the activity of cytosolic Hsp90 chaperones, even though such chaperones cannot directly engage nascent collagen molecules. Our results highlight the value of a cell-based high-throughput screen for selective modulators of collagen secretion and suggest an unanticipated role for cytosolic Hsp90 in collagen secretion.

Collaboration


Dive into the Jaime H. Cheah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge