Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Clemons is active.

Publication


Featured researches published by Paul A. Clemons.


Science | 2006

The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease

Justin Lamb; Emily D Crawford; David Peck; Joshua W. Modell; Irene C. Blat; Matthew J. Wrobel; Jim Lerner; Jean-Philippe Brunet; Aravind Subramanian; Kenneth N. Ross; Michael P Reich; Haley Hieronymus; Guo Wei; Scott A. Armstrong; Stephen J. Haggarty; Paul A. Clemons; Ru Wei; Steven A. Carr; Eric S. Lander; Todd R. Golub

To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this “Connectivity Map” resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.


Cell | 2014

Regulation of ferroptotic cancer cell death by GPX4.

Wan Seok Yang; Rohitha SriRamaratnam; Matthew Welsch; Kenichi Shimada; Rachid Skouta; Vasanthi Viswanathan; Jaime H. Cheah; Paul A. Clemons; Alykhan F. Shamji; Clary B. Clish; Lewis M. Brown; Albert W. Girotti; Virginia W. Cornish; Stuart L. Schreiber; Brent R. Stockwell

Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.


Nature Chemical Biology | 2013

Target identification and mechanism of action in chemical biology and drug discovery

Monica Schenone; Vlado Dančík; Bridget K. Wagner; Paul A. Clemons

Target-identification and mechanism-of-action studies have important roles in small-molecule probe and drug discovery. Biological and technological advances have resulted in the increasing use of cell-based assays to discover new biologically active small molecules. Such studies allow small-molecule action to be tested in a more disease-relevant setting at the outset, but they require follow-up studies to determine the precise protein target or targets responsible for the observed phenotype. Target identification can be approached by direct biochemical methods, genetic interactions or computational inference. In many cases, however, combinations of approaches may be required to fully characterize on-target and off-target effects and to understand mechanisms of small-molecule action.


Nucleic Acids Research | 2007

ChemBank: a small-molecule screening and cheminformatics resource database

Kathleen Petri Seiler; Gregory George; Mary Pat Happ; Nicole E. Bodycombe; Hyman A. Carrinski; Stephanie Norton; Steve Brudz; John P Sullivan; Jeremy L. Muhlich; Martin Serrano; Paul Ferraiolo; Nicola Tolliday; Stuart L. Schreiber; Paul A. Clemons

ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector.


Cell | 2013

An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules

Amrita Basu; Nicole E. Bodycombe; Jaime H. Cheah; Edmund V. Price; Ke Liu; Giannina Ines Schaefer; Richard Yon Ebright; Michelle L. Stewart; Daisuke Ito; Stephanie Wang; Abigail L. Bracha; Ted Liefeld; Mathias J. Wawer; Joshua C. Gilbert; Andrew J. Wilson; Nicolas Stransky; Gregory V. Kryukov; Vlado Dančík; Jordi Barretina; Levi A. Garraway; C. Suk-Yee Hon; Benito Munoz; Joshua Bittker; Brent R. Stockwell; Dineo Khabele; Paul A. Clemons; Alykhan F. Shamji; Stuart L. Schreiber

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene β-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles

Paul A. Clemons; Nicole E. Bodycombe; Hyman A. Carrinski; J. Anthony Wilson; Alykhan F. Shamji; Bridget K. Wagner; Angela N. Koehler; Stuart L. Schreiber

Using a diverse collection of small molecules generated from a variety of sources, we measured protein-binding activities of each individual compound against each of 100 diverse (sequence-unrelated) proteins using small-molecule microarrays. We also analyzed structural features, including complexity, of the small molecules. We found that compounds from different sources (commercial, academic, natural) have different protein-binding behaviors and that these behaviors correlate with general trends in stereochemical and shape descriptors for these compound collections. Increasing the content of sp3-hybridized and stereogenic atoms relative to compounds from commercial sources, which comprise the majority of current screening collections, improved binding selectivity and frequency. The results suggest structural features that synthetic chemists can target when synthesizing screening collections for biological discovery. Because binding proteins selectively can be a key feature of high-value probes and drugs, synthesizing compounds having features identified in this study may result in improved performance of screening collections.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Route to three-dimensional fragments using diversity-oriented synthesis

Alvin W. Hung; Alex Ramek; Yikai Wang; Taner Kaya; J. Anthony Wilson; Paul A. Clemons; Damian W. Young

Fragment-based drug discovery (FBDD) has proven to be an effective means of producing high-quality chemical ligands as starting points for drug-discovery pursuits. The increasing number of clinical candidate drugs developed using FBDD approaches is a testament of the efficacy of this approach. The success of fragment-based methods is highly dependent on the identity of the fragment library used for screening. The vast majority of FBDD has centered on the use of sp2-rich aromatic compounds. An expanded set of fragments that possess more 3D character would provide access to a larger chemical space of fragments than those currently used. Diversity-oriented synthesis (DOS) aims to efficiently generate a set of molecules diverse in skeletal and stereochemical properties. Molecules derived from DOS have also displayed significant success in the modulation of function of various “difficult” targets. Herein, we describe the application of DOS toward the construction of a unique set of fragments containing highly sp3-rich skeletons for fragment-based screening. Using cheminformatic analysis, we quantified the shapes and physical properties of the new 3D fragments and compared them with a database containing known fragment-like molecules.


Cancer Discovery | 2015

Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset

Brinton Seashore-Ludlow; Matthew G. Rees; Jaime H. Cheah; Murat Cokol; Edmund V. Price; Matthew E. Coletti; Victor Victor Jones; Nicole E. Bodycombe; Christian K. Soule; Joshua Gould; Benjamin Alexander; Ava Li; Philip Montgomery; Mathias J. Wawer; Nurdan Kuru; Joanne Kotz; C. Suk-Yee Hon; Benito Munoz; Ted Liefeld; Vlado Dančík; Joshua Bittker; Michelle Palmer; James E. Bradner; Alykhan F. Shamji; Paul A. Clemons; Stuart L. Schreiber

UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.


Cell | 2014

Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality.

Livnat Jerby-Arnon; Nadja Pfetzer; Yedael Y. Waldman; Lynn McGarry; Daniel James; Emma Shanks; Brinton Seashore-Ludlow; Adam Weinstock; Tamar Geiger; Paul A. Clemons; Eyal Gottlieb; Eytan Ruppin

Synthetic lethality occurs when the inhibition of two genes is lethal while the inhibition of each single gene is not. It can be harnessed to selectively treat cancer by identifying inactive genes in a given cancer and targeting their synthetic lethal (SL) partners. We present a data-driven computational pipeline for the genome-wide identification of SL interactions in cancer by analyzing large volumes of cancer genomic data. First, we show that the approach successfully captures known SL partners of tumor suppressors and oncogenes. We then validate SL predictions obtained for the tumor suppressor VHL. Next, we construct a genome-wide network of SL interactions in cancer and demonstrate its value in predicting gene essentiality and clinical prognosis. Finally, we identify synthetic lethality arising from gene overactivation and use it to predict drug efficacy. These results form a computational basis for exploiting synthetic lethality to uncover cancer-specific susceptibilities.


Journal of Clinical Investigation | 2014

Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

Alejandro Gutierrez; Li Pan; Richard W.J. Groen; Frederic Baleydier; Alex Kentsis; Jason J. Marineau; Ruta Grebliunaite; Elena Kozakewich; Casie Reed; Françoise Pflumio; Sandrine Poglio; Benjamin Uzan; Paul A. Clemons; Lynn VerPlank; Frank An; Jason Burbank; Stephanie Norton; Nicola Tolliday; Hanno Steen; Andrew P. Weng; H. Yuan; James E. Bradner; Constantine S. Mitsiades; A. Thomas Look

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drugs antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.

Collaboration


Dive into the Paul A. Clemons's collaboration.

Top Co-Authors

Avatar

Stuart L. Schreiber

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge