Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jake F. Weltzin is active.

Publication


Featured researches published by Jake F. Weltzin.


Nature | 2004

Convergence across biomes to a common rain-use efficiency.

Travis E. Huxman; Melinda D. Smith; Philip A. Fay; Alan K. Knapp; M. Rebecca Shaw; Michael E. Loik; Stanley D. Smith; David T. Tissue; John C. Zak; Jake F. Weltzin; William T. Pockman; Osvaldo E. Sala; Brent M. Haddad; John Harte; George W. Koch; Susan Schwinning; Eric E. Small; David G. Williams

Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUEmax) that is typical of arid ecosystems. RUEmax was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.


BioScience | 2003

Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation

Jake F. Weltzin; Michael E. Loik; Susanne Schwinning; David G. Williams; Philip A. Fay; Brent M. Haddad; John Harte; Travis E. Huxman; Alan K. Knapp; Guanghui Lin; William T. Pockman; Rebecca Shaw; Eric E. Small; Melinda D. Smith; Stanley D. Smith; David T. Tissue; John C. Zak

Abstract Changes in Earths surface temperatures caused by anthropogenic emissions of greenhouse gases are expected to affect global and regional precipitation regimes. Interactions between changing precipitation regimes and other aspects of global change are likely to affect natural and managed terrestrial ecosystems as well as human society. Although much recent research has focused on assessing the responses of terrestrial ecosystems to rising carbon dioxide or temperature, relatively little research has focused on understanding how ecosystems respond to changes in precipitation regimes. Here we review predicted changes in global and regional precipitation regimes, outline the consequences of precipitation change for natural ecosystems and human activities, and discuss approaches to improving understanding of ecosystem responses to changing precipitation. Further, we introduce the Precipitation and Ecosystem Change Research Network (PrecipNet), a new interdisciplinary research network assembled to encourage and foster communication and collaboration across research groups with common interests in the impacts of global change on precipitation regimes, ecosystem structure and function, and the human enterprise.


Oecologia | 2004

Resource pulses, species interactions and diversity maintenance in arid and semi-arid environments

Peter Chesson; Renate L. E. Gebauer; Susan Schwinning; Nancy Huntly; Kerstin Wiegand; Morgan S. K. Ernest; Anna A. Sher; Ariel Novoplansky; Jake F. Weltzin

Arid environments are characterized by limited and variable rainfall that supplies resources in pulses. Resource pulsing is a special form of environmental variation, and the general theory of coexistence in variable environments suggests specific mechanisms by which rainfall variability might contribute to the maintenance of high species diversity in arid ecosystems. In this review, we discuss physiological, morphological, and life-history traits that facilitate plant survival and growth in strongly water-limited variable environments, outlining how species differences in these traits may promote diversity. Our analysis emphasizes that the variability of pulsed environments does not reduce the importance of species interactions in structuring communities, but instead provides axes of ecological differentiation between species that facilitate their coexistence. Pulses of rainfall also influence higher trophic levels and entire food webs. Better understanding of how rainfall affects the diversity, species composition, and dynamics of arid environments can contribute to solving environmental problems stemming from land use and global climate change.


Science of The Total Environment | 2000

Drought disturbance from climate change: response of United States forests.

Paul J. Hanson; Jake F. Weltzin

Predicted changes in climate have raised concerns about potential impacts on terrestrial forest ecosystem productivity, biogeochemical cycling, and the availability of water resources. This review summarizes characteristics of drought typical to the major forest regions of the United States, future drought projections, and important features of plant and forest community response to drought. Research needs and strategies for coping with future drought are also discussed. Notwithstanding uncertainties surrounding the magnitude and direction of future climate change, and the net impact on soil water availability to forests, a number of conclusions can be made regarding the sensitivity of forests to future drought. The primary response will be a reduction in net primary production and stand water use, which are driven by reductions in stomatal conductance. Mortality of small stature plants (i.e. seedlings and saplings) is a likely consequence of severe drought. In comparison, deep rooting and substantial reserves of carbohydrates and nutrients make mature trees less susceptible to water limitations caused by severe or prolonged drought. However, severe or prolonged drought may render even mature trees more susceptible to insects or disease. Drought-induced reductions in decomposition rates may cause a buildup of organic material on the forest floor, with ramifications for fire regimes and nutrient cycling. Although early model predictions of climate change impacts suggested extensive forest dieback and species migration, more recent analyses suggest that catastrophic dieback will be a local phenomenon, and changes in forest composition will be a relatively gradual process. Better climate predictions at regional scales, with a higher temporal resolution (months to days), coupled with carefully designed, field-based experiments that incorporate multiple driving variables (e.g. temperature and CO2), will advance our ability to predict the response of different forest regions to climate change.


Ecology | 2000

RESPONSE OF BOG AND FEN PLANT COMMUNITIES TO WARMING AND WATER-TABLE MANIPULATIONS

Jake F. Weltzin; John Pastor; Calvin Harth; Scott D. Bridgham; Karen Updegraff; Carmen T. Chapin

Large-scale changes in climate may have unexpected effects on ecosystems, given the importance of climate as a control over almost all ecosystem attributes and internal feedbacks. Changes in plant community productivity or composition, for example, may alter ecosystem resource dynamics, trophic structures, or disturbance regimes, with subsequent positive or neg- ative feedbacks on the plant community. At northern latitudes, where increases in temperature are expected to be greatest but where plant species diversity is relatively low, climatically mediated changes in species composition or abundance will likely have large ecosystem effects. In this study, we investigated effects of infrared loading and manipulations of water-table ele- vation on net primary productivity of plant species in bog and fen wetland mesocosms between 1994 and 1997. We removed 27 intact soil monoliths (2.1 m2 surface area, 0.5-0.7 m depth) each from a bog and a fen in northern Minnesota to construct a large mesocosm facility that allows for direct manipulation of climatic variables in a replicated experimental design. The treatment design was a fully crossed factorial with three infrared-loading treatments, three water-table treatments, and two ecosystem types (bogs and fens), with three replicates of all treatment combinations. Overhead infrared lamps caused mean monthly soil temperatures to increase by 1.6-4.1?C at 15-cm depth during the growing season (May-October). In 1996, depths to water table averaged -11, -19, and -26 cm in the bog plots, and 0, -10, and -19 cm in the fen plots. Annual aboveground net primary production (ANPP) of bryophyte, forb, graminoid, and shrub life-forms was determined for the dominant species in the mesocosm plots based on species- specific canopy/biomass relationships. Belowground net primary production (BNPP) was esti- mated using root in-growth cores. Bog and fen communities differed in their response to infrared loading and water-table treatments because of the differential response of life-forms and species characteristic of each community. Along a gradient of increasing water-table elevation, production of bryophytes increased, and production of shrubs decreased in the bog community. Along a similar gradient in the fen community, production of graminoids and forbs increased. Along a gradient of in- creasing infrared loading in the bog, shrub production increased whereas graminoid production decreased. In the fen, graminoids were most productive at high infrared loading, and forbs were most productive at medium infrared loading. In the bog and fen, BNPP:ANPP ratios increased with warming and drying, indicating shifts in carbon allocation in response to climate change. Further, opposing responses of species and life-forms tended to cancel out the response of production at higher levels of organization, especially in the bog. For example, total net primary productivity in the bog did not differ between water-table treatments because BNPP was greatest in the dry treatment whereas ANPP was greatest in the wet treatment. The differential responses of species, life-forms, and above- and belowground biomass pro- duction to the treatments suggest that bog and fen plant communities will change, in different directions and magnitudes, in response to warming and changes in water-table elevation. Further, results of this and complementary research indicate that these peatlands may mediate their energy, carbon, and nutrient budgets through differential responses of the plant communities. Thus, predictions of the response of peatlands to changes in climate should consider differences in plant community structure, as well as biogeochemistry and hydrology, that characterize and differentiate these two ecosystems.


Ecological Applications | 2002

NET PRIMARY PRODUCTIVITY OF A CO2‐ENRICHED DECIDUOUS FOREST AND THE IMPLICATIONS FOR CARBON STORAGE

Richard J. Norby; Paul J. Hanson; Elizabeth O'neill; Timothy J. Tschaplinski; Jake F. Weltzin; Randi A. Hansen; Weixin Cheng; Stan D. Wullschleger; Carla A. Gunderson; Nelson T. Edwards; Dale W. Johnson

A central question concerning the response of terrestrial ecosystems to a changing atmosphere is whether increased uptake of carbon in response to increasing at- mospheric carbon dioxide concentration results in greater plant biomass and carbon storage or, alternatively, faster cycling of C through the ecosystem. Net primary productivity (NPP) of a closed-canopy Liquidambar styraciflua (sweetgum) forest stand was assessed for three years in a free-air CO2-enrichment (FACE) experiment. NPP increased 21% in stands ex- posed to elevated CO2, and there was no loss of response over time. Wood increment increased significantly during the first year of exposure, but subsequently most of the extra C was allocated to production of leaves and fine roots. These pools turn over more rapidly than wood, thereby reducing the potential of the forest stand to sequester additional C in response to atmospheric CO2 enrichment. Hence, while this experiment provides the first evidence that CO2 enrichment can increase productivity in a closed-canopy deciduous forest, the implications of this result must be tempered because the increase in productivity resulted in faster cycling of C through the system rather than increased C storage in wood. The fate of the additional C entering the soil system and the environmental interactions that influence allocation need further investigation.


Oecologia | 2004

Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture

Travis E. Huxman; Jessica M. Cable; Danielle D. Ignace; J. Alex Eilts; Nathan B. English; Jake F. Weltzin; David G. Williams

Physiological activity and structural dynamics in arid and semi-arid ecosystems are driven by discrete inputs or “pulses” of growing season precipitation. Here we describe the short-term dynamics of ecosystem physiology in experimental stands of native (Heteropogon contortus) and invasive (Eragrostis lehmanniana) grasses to an irrigation pulse across two geomorphic surfaces with distinctly different soils: a Pleistocene-aged surface with high clay content in a strongly horizonated soil, and a Holocene-aged surface with low clay content in homogenously structured soils. We evaluated whole-ecosystem and leaf-level CO2 and H2O exchange, soil CO2 efflux, along with plant and soil water status to understand potential constraints on whole-ecosystem carbon exchange during the initiation of the summer monsoon season. Prior to the irrigation pulse, both invasive and native grasses had less negative pre-dawn water potentials (Ψpd), greater leaf photosynthetic rates (Anet) and stomatal conductance (gs), and greater rates of net ecosystem carbon exchange (NEE) on the Pleistocene surface than on the Holocene. Twenty-four hours following the experimental application of a 39xa0mm irrigation pulse, soil CO2 efflux increased leading to all plots losing CO2 to the atmosphere over the course of a day. Invasive species stands had greater evapotranspiration rates (ET) immediately following the precipitation pulse than did native stands, while maximum instantaneous NEE increased for both species and surfaces at roughly the same rate. The differential ET patterns through time were correlated with an earlier decline in NEE in the invasive species as compared to the native species plots. Plots with invasive species accumulated between 5% and 33% of the carbon that plots with the native species accumulated over the 15-day pulse period. Taken together, these results indicate that system CO2 efflux (both the physical displacement of soil CO2 by water along with plant and microbial respiration) strongly controls whole-ecosystem carbon exchange during precipitation pulses. Since CO2 and H2O loss to the atmosphere was partially driven by species effects on soil microclimate, understanding the mechanistic relationships between the soil characteristics, plant ecophysiological responses, and canopy structural dynamics will be important for understanding the effects of shifting precipitation and vegetation patterns in semi-arid environments.


Oecologia | 1997

Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA

Jake F. Weltzin; Guy R. McPherson

Abstract Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50u2009cm deep, 2-month-old seedlings utilized water from <15u2009cm, and 1- and 2-year-old seedlings and grasses used water from between 20u2009cm and 35u2009cm. This suggests that very young seedlings are decoupled from grasses in this system, which may facilitate germination and early establishment of Q. emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi.


Oecologia | 2001

Production and microtopography of bog bryophytes: response to warming and water-table manipulations

Jake F. Weltzin; Calvin Harth; Scott D. Bridgham; John Pastor; Mark Vonderharr

Boreal peatlands, which contain a large fraction of the worlds soil organic carbon pool, may be significantly affected by changes in climate and land use, with attendant feedback to climate through changes in albedo, fluxes of energy or trace gases, and soil carbon storage. The response of peatlands to changing environmental conditions will probably be dictated in part by scale-dependent topographic heterogeneity, which is known to interact with hydrology, vegetation, nutrients, and emissions of trace gases. Because the bryophyte community can contribute the majority of aboveground production in bogs, we investigated how microscale topography affects the response of bryophyte species production and cover to warming (using overhead infrared lamps) and manipulations of water-table height within experimental mesocosms. We removed 27 intact peat monoliths (2.1-m2 surface area, 0.5–0.7xa0m depth) from a bog in northern Minnesota, USA, and subjected them to three warming and three water-table treatments in a fully crossed factorial design. Between 1994 and 1998, we determined annual production of the four dominant bryophyte taxa within three microtopographic zones (low, medium, and high relative to the water table). We also estimated species cover and calculated changes in topography and roughness of the bryophyte surface through time. Total production of all bryophytes, and production of the individual taxa Polytrichum strictum, Sphagnum magellanicum, and Sphagnum Section Acutifolia, were about 100% greater in low microtopographic zones than in high zones, and about 50% greater in low than in medium zones. Production of bryophytes increased along the gradient of increasing water-table heights, but in most years, total production of bryophytes was negatively correlated with height above the set water table only for the wettest water-table treatment. Although bryophyte production was unaffected by the warming treatments, the bryophyte surface flattened in proportion to the degree of warming. These results indicate that production of bryophytes is driven most strongly by the absolute and relative height of the bryophyte surface above the water table. Predicted changes in water-table height commensurate with changes in surface temperature may thus affect both production and superficial topography of bryophyte communities.


Ecological Monographs | 1999

FACILITATION OF CONSPECIFIC SEEDLING RECRUITMENT AND SHIFTS IN TEMPERATE SAVANNA ECOTONES

Jake F. Weltzin; Guy R. McPherson

In contrast to documented increases in woody plant dominance of savannas and grasslands of North America, oak (Quercus L.) savannas that form lower tree lines in the southwestern United States and northwestern Mexico have been stable over the last several centuries. We sought to identify potential biotic and abiotic constraints on seedling recruitment of Quercus emoryi within the context of potential shifts in lower tree line. We used field surveys to describe seedling distribution at and below lower tree line, and to determine the potential for acorn dispersal from lower tree line into adjacent grassland. Field and greenhouse experiments were used to test explanatory hypotheses generated by descriptive surveys.xa0Q. emoryi seedlings were located almost exclusively beneath mature, conspecific tree canopies within the woodland and savanna and were absent from adjacent semidesert grassland in 1993 and 1995. Seed bank surveys indicated that acorns were concentrated beneath tree canopies and were dispersed into adjacent grassland in low numbers. Although soil N, C, and P were about two times greater beneath trees than in adjacent grassland, experimental nutrient amendments to subcanopy and grassland soils indicated that soil nutrients did not limit Q. emoryi growth. Reciprocal transfers of subcanopy and grassland soil to subcanopy and grassland microsites indicated that microsite was more important than soil source for seedling growth. Overstory shade was important at all stages of seedling development investigated: the provision of artificial or natural shade increased rates of seedling emergence and subsequent survival as much as 19-fold and increased recruitment rates between 30- and 60-fold.xa0We conclude that rates of Q. emoryi recruitment within grasslands below tree line are relatively low and are constrained by low rates of seed dispersal coupled with a low probability of seedling emergence. In contrast, large numbers of acorns are dispersed directly beneath Q. emoryi trees, where they have a higher probability of emergence than in adjacent grassland. Survival rates of emerged seedlings were low, regardless of landscape position. Thus, observed patterns of seedling distribution on the landscape resulted from interactions between seed dispersal and habitat-specific response of seedlings to environmental variation.xa0Results of this and complementary research suggest that the lower tree line in southern Arizona is stabilized by self-enhancing feedback mechanisms of overstory shade, seed dispersal, and seedling establishment, coupled with strong abiotic constraints beyond the current ecotone. These processes stabilize the woodland–grassland ecotone both spatially and temporally, consistent with Wilson and Agnews one-sided positive feedback switch. Although this switch would not produce an indefinitely stable vegetation mosaic, upslope or downslope shifts in lower tree line are apparently resistant to decadal or even century-scale climatic perturbation. The observed shift in tree line in the last millennium was less likely the result of slow, spatial progression of autogenic safe sites than the result of episodic and infrequent allogenic processes that simulated or negated the importance of conspecific, biogenic safe sites.

Collaboration


Dive into the Jake F. Weltzin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Norby

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Pastor

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge