Jakob Bondo Hansen
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jakob Bondo Hansen.
Diabetes | 2012
Vitaly Ablamunits; Octavian Henegariu; Jakob Bondo Hansen; Lynn Opare-Addo; Paula Preston-Hurlburt; Pere Santamaria; Thomas Mandrup-Poulsen; Kevan C. Herold
Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1β. We postulated that blockade of IL-1β would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F(ab′)2 fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti–IL-1β mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than mice treated with anti-CD3 mAb or IL-1RA alone. Combination-treated mice had increased IL-5, IL-4, and interferon (IFN)-γ levels in circulation. There were reduced pathogenic NOD-relevant V7 peptide-V7+ T cells in the pancreatic lymph nodes. Their splenocytes secreted more IL-10, had increased arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-γ, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies indicate that the combination of anti-CD3 mAb with IL-1RA is synergistic in reversal of diabetes through a combination of mechanisms. The combination causes persistent remission from islet inflammation.
Endocrinology | 2011
Jakob Bondo Hansen; Claus Brandt; Anders Rinnov Nielsen; Pernille Hojman; Martin Whitham; Mark A. Febbraio; Bente Klarlund Pedersen; Peter Plomgaard
Follistatin is a member of the TGF-β super family and inhibits the action of myostatin to regulate skeletal muscle growth. The regulation of follistatin during physical exercise is unclear but may be important because physical activity is a major intervention to prevent age-related sarcopenia. First, healthy subjects performed either bicycle or one-legged knee extensor exercise. Arterial-venous differences were assessed during the one-legged knee extensor experiment. Next, mice performed 1 h of swimming, and the expression of follistatin was examined in various tissues using quantitative PCR. Western blotting assessed follistatin protein content in the liver. IL-6 and epinephrine were investigated as drivers of follistatin secretion. After 3 h of bicycle exercise, plasma follistatin increased 3 h into recovery with a peak of 7-fold. No net release of follistatin could be detected from the exercising limb. In mice performing a bout of swimming exercise, increases in plasma follistatin as well as follistatin mRNA and protein expression in the liver were observed. IL-6 infusion to healthy young men did not affect the follistatin concentration in the circulation. When mice were stimulated with epinephrine, no increase in the hepatic mRNA of follistatin was observed. This is the first study to demonstrate that plasma follistatin is increased during exercise and most likely originates from the liver. These data introduce new perspectives regarding muscle-liver cross talk during exercise and during recovery from exercise.
American Journal of Physiology-endocrinology and Metabolism | 2011
Pernille Hojman; Christine Dethlefsen; Claus Brandt; Jakob Bondo Hansen; Line Pedersen; Bente Klarlund Pedersen
Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines mediate some of the inhibitory effects of exercise on mammary cancer cell proliferation. Serum and muscles were collected from mice after an exercise bout. Incubation with exercise-conditioned serum inhibited MCF-7 cell proliferation by 52% and increased caspase activity by 54%. A similar increase in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7 proliferation by 42%, increase caspase activity by 46%, and induce apoptosis. Blocking OSM signaling with anti-OSM antibodies reduced the induction of caspase activity by 51%. To verify that OSM was a myokine, we showed that it was significantly upregulated in serum and in three muscles, tibialis cranialis, gastronemius, and soleus, after an exercise bout. In contrast, OSM expression remained unchanged in subcutaneous and visceral adipose tissue, liver, and spleen (mononuclear cells). We conclude that postexercise serum inhibits mammary cancer cell proliferation and induces apoptosis of these cells. We suggest that one or more myokines secreted from working muscles may be mediating this effect and that OSM is a possible candidate. These findings emphasize that role of physical activity in cancer treatment, showing a direct link between exercise-induced humoral factors and decreased tumor cell growth.
Journal of Applied Physiology | 2012
Sine H. Knudsen; Louise Hansen; Maria Pedersen; Thomas Fremming Dejgaard; Jakob Bondo Hansen; Gerrit van Hall; Carsten Thomsen; Thomas P. J. Solomon; Bente Klarlund Pedersen; Rikke Krogh-Madsen
A lifestyle characterized by inactivity and a high-calorie diet is a known risk factor for impaired insulin sensitivity and development of Type 2 diabetes mellitus. To investigate possible links, nine young healthy men (24 ± 3 yr; body mass index of 21.6 ± 2.5 kg/m(2)) completed 14 days of step reduction (10,000 to 1,500 steps/day) and overfeeding (+50% kcal). Body composition (dual X-ray absorptiometry, MRI), aerobic fitness (maximal O(2) consumption), systemic inflammation and insulin sensitivity [oral glucose tolerance test (OGTT), hyperinsulinemic euglycemic clamp] were assessed before (day 0), during (days 3 and 7), and immediately after the intervention (day 14), with follow-up tests (day 30). Body weight had increased at days 7 and 14 (P < 0.05). The amount of visceral fat had increased at day 14 compared with day 0 (P < 0.05). The insulin response to the OGTT had increased at days 7 and 14 (P < 0.05). Insulin sensitivity, estimated using the Matsuda index, had decreased at days 3 and 7 (P < 0.01). At day 14, glucose infusion rates had decreased by ∼44% during the euglycemic clamps (P < 0.05). Also, plasma levels of leptin and adiponectin had increased (P < 0.05), whereas no changes were seen in inflammatory markers. At day 30, body weight and whole body adiposity were still elevated compared with day 0 (P < 0.05), whereas the insulin sensitivity as well as the insulin response to the OGTT did not differ from baseline. The glucose response to the OGTT was only affected at day 30, with a decrease compared with day 0. Our data show that insulin sensitivity was impaired after 3 days of inactivity and overfeeding. Impairments in insulin sensitivity occurred before changes in body composition, supporting the notion that the initial steps in impairment of insulin sensitivity may be linked directly to the effects of inactivity and a high calorie intake.
Acta Physiologica | 2014
Jakob Bondo Hansen; Ingrid Wahl Moen; Thomas Mandrup-Poulsen
The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β‐cell is complex. Excess free iron is toxic, but at the same time, iron is required for normal β‐cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro‐inflammatory cytokine‐induced β‐cell death is not fully understood, but may include iron‐induced ROS formation resulting in dedifferentiation by activation of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro‐inflammatory cytokine IL‐1β facilitates divalent metal transporter 1 (DMT1)‐induced β‐cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides the relay between inflammation and oxidative β‐cell damage. Iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients. However, the therapeutic effect and safety of iron reduction need to be tested in clinical trials before dietary interventions or the use of iron chelation therapy titrated to avoid anaemia.
PLOS ONE | 2012
Claus Brandt; Anders Nielsen; Christian P. Fischer; Jakob Bondo Hansen; Bente Klarlund Pedersen; Peter Plomgaard
Objective Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. Design 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. Results Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001), plasma insulin (68.2 versus 47.2 pmol/L, P<0.002) and HOMA2-IR (1.6 versus 0.9, P<0.0001) when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (r = 0.30, P<0.01), plasma IL-6 (r = 0.34, P<0.05) and VO2 max (r = −0.26, P<0.05), however, no correlations were observed in patients with type 2 diabetes. Conclusions This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes.
The Journal of Physiology | 2011
Line Pedersen; Henriette Pilegaard; Jakob Bondo Hansen; Claus Brandt; Helle Adser; Juan Hidalgo; Jesper Olesen; Bente Klarlund Pedersen; Pernille Hojman
Non‐technical summary Exercise is known to stimulate the production of various exercise factors including the well‐described muscle‐derived interleukin‐6 (IL‐6). We show that exercise causes a massive expression of the chemokine CXCL‐1 in serum, in skeletal muscle and especially in the liver. Furthermore we find that this exercise‐induced liver CXCL‐1 expression is regulated by IL‐6 and that muscle‐derived IL‐6 is capable of stimulating liver CXCL‐1 expression. Such knowledge of the regulation of exercise factors contributes to the understanding of how the liver and muscle communicate in response to exercise.
Diabetologia | 2013
Lemieux Luu; Feihan F. Dai; Kacey J. Prentice; X. Huang; Alexandre B. Hardy; Jakob Bondo Hansen; Ying Liu; Jamie W. Joseph; Michael B. Wheeler
Aims/hypothesisSirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin secretion in the pancreatic beta cell.MethodsPancreatic beta cell-specific Sirt1 deletion was induced by tamoxifen injection in 9-week-old Pdx1CreER:floxSirt1 mice (Sirt1BKO). Controls were injected with vehicle. Mice were assessed metabolically via glucose challenge, insulin tolerance tests and physical variables. In parallel, Sirt1 short interfering RNA-treated MIN6 cells (SIRT1KD) and isolated Sirt1BKO islets were used to investigate the effect of SIRT1 inactivation on insulin secretion and gene expression.ResultsOGTTs showed impaired glucose disposal in Sirt1BKO mice due to insufficient insulin secretion. Isolated Sirt1BKO islets and SIRT1KD MIN6 cells also exhibited impaired glucose-stimulated insulin secretion. Subsequent analyses revealed impaired α-ketoisocaproic acid-induced insulin secretion and attenuated glucose-induced Ca2+ influx, but normal insulin granule exocytosis in Sirt1BKO beta cells. Microarray studies revealed a large cluster of mitochondria-related genes, the expression of which was dysregulated in SIRT1KD MIN6 cells. Upon further analysis, we demonstrated an explicit defect in mitochondrial function: the inability to couple nutrient metabolism to mitochondrial membrane hyperpolarisation and reduced oxygen consumption rates.Conclusions/interpretationTaken together, these findings indicate that in beta cells the deacetylase SIRT1 regulates the expression of specific mitochondria-related genes that control metabolic coupling, and that a decrease in beta cell Sirt1 expression impairs glucose sensing and insulin secretion.
Archives of Biochemistry and Biophysics | 2012
Guy Wayne Novotny; Morten Lundh; Marie Balslev Backe; Dan Ploug Christensen; Jakob Bondo Hansen; Mattias S. Dahllöf; Emil Marek Heymans Pallesen; Thomas Mandrup-Poulsen
Disease is conventionally viewed as the chaotic inappropriate outcome of deranged tissue function resulting from aberrancies in cellular processes. Yet the patho-biology of cellular dysfunction and death encompasses a coordinated network no less sophisticated and regulated than maintenance of homeostatic balance. Cellular demise is far from passive subordination to stress but requires controlled coordination of energy-requiring activities including gene transcription and protein translation that determine the graded transition between defensive mechanisms, cell cycle regulation, dedifferentiation and ultimately to the activation of death programmes. In fact, most stressors stimulate both homeostasis and regeneration on one hand and impairment and destruction on the other, depending on the ambient circumstances. Here we illustrate this bimodal ambiguity in cell response by reviewing recent progress in our understanding of how the pancreatic β cell copes with inflammatory stress by changing gene transcription and protein translation by the differential and interconnected action of reactive oxygen and nitric oxide species, microRNAs and posttranslational protein modifications.
Cell Reports | 2016
Ying Liu; Kacey J. Prentice; Judith A. Eversley; Cheng Hu; Battsetseg Batchuluun; Katherine Leavey; Jakob Bondo Hansen; David Wei; Brian J. Cox; Feihan F. Dai; Weiping Jia; Michael B. Wheeler
Prediabetes, a state of mild glucose intolerance, can persist for years before a sudden decline in beta cell function and rapid deterioration to overt diabetes. The mechanism underlying this tipping point of beta cell dysfunction remains unknown. Here, the furan fatty acid metabolite CMPF was evaluated in a prospective cohort. Those who developed overt diabetes had a significant increase in CMPF over time, whereas prediabetics maintained chronically elevated levels, even up to 5 years before diagnosis. To evaluate the effect of increasing CMPF on diabetes progression, we used obese, insulin-resistant models of prediabetes. CMPF accelerated diabetes development by inducing metabolic remodeling, resulting in preferential utilization of fatty acids over glucose. This was associated with diminished glucose-stimulated insulin secretion, increased ROS formation, and accumulation of proinsulin, all characteristics of human diabetes. Thus, an increase in CMPF may represent the tipping point in diabetes development by accelerating beta cell dysfunction.