Jameel Lone
Daegu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jameel Lone.
Journal of Nutritional Biochemistry | 2016
Jameel Lone; Jae Heon Choi; Sang Woo Kim; Jong Won Yun
Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.
Life Sciences | 2016
Jameel Lone; Jong Won Yun
AIMS Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. MAIN METHODS Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. KEY FINDINGS Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. SIGNIFICANCE Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity.
Frontiers in Microbiology | 2017
Irfan A. Rather; Jameel Lone; Vivek K. Bajpai; Yong-Ha Park
The presence of the Zika virus (ZIKV) infection has gone ahead to be a threat to people based on its adverse impacts. More specifically, the pregnant women have been discouraged from traveling to the areas affected by the ZIKV because of the likelihood of the virus causing congenital abnormalities especially the microcephaly. The pregnant women probably attracted the virus during their first trimester while visiting ZIKV affected territories. Although the ZIKV infected cases have reduced in some parts of countries, the global risk assessment has not been changed. The virus continues to spread geographically to areas where competent vectors are present. At present, there is still no treatment of ZIKV related illness, especially microcephaly.
Frontiers in Cellular and Infection Microbiology | 2017
Irfan A. Rather; Hilal Ahmad Parray; Jameel Lone; Woon K. Paek; Jeongheui Lim; Vivek K. Bajpai; Yong-Ha Park
Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.
Biochimie | 2018
Jameel Lone; Hilal Ahmad Parray; Jong Won Yun
Browning of white adipocytes (beiging) is an attractive therapeutic strategy against obesity and its associated metabolic complications. Nobiletin (NOB) is a polymethoxylated flavone present in citrus fruits and has been reported to have anti-obesity effects. Here, we report that nobiletin exerts dual modulatory effects on adipocytes via induction of browning in 3T3-L1 white adipocytes and amelioration of stress in adipocytes. Nobiletin-induced beiging was investigated by determining expression levels of beige-specific genes and proteins by RT-PCR and immunoblot analysis, respectively. Nobiletin treatment rapidly elevated the expression levels of beige-specific genes such as Cd137, Cidea, Tbx1, and Tmem26. Further, nobiletin enhanced expression of the key transcription factors C/EBPβ, PPARδ, and PPARα, which are responsible for remodeling of white adipocytes. Nobiletin also strikingly activated HIB1B brown adipocytes and induced mitochondrial biogenesis in 3T3-L1 white adipocytes. In addition, nobiletin altered the expression of several lipid metabolism-related proteins such as ACOX1, CPT1, FAS, p-PLIN, SREBP and SIRT1. Moreover, nobiletin ameliorated stress in adipocytes by inhibiting expression levels of key stress molecules such as JNK and c-JUN. Nobiletin-induced browning could be mediated by tight regulation of kinases, as nobiletin induced PKA and p-AMPK at the protein expression level, and inhibition of PKA and p-AMPK by H-89 and dorsomorphin, respectively, abolished expression of the thermogenic markers PGC-1α and UCP1. Taken together, our findings suggest that nobiletin plays a modulatory role in adipocytes via induction of browning in 3T3-L1 white adipocytes and activation of HIB1B brown adipocytes combined with amelioration of stress in adipocytes, thereby exhibiting therapeutic potential against obesity.
Microbial Pathogenesis | 2018
Jameel Lone; Wee Yin Koh; Hilal Ahmad Parray; Woon K. Paek; Jeongheui Lim; Irfan A. Rather; Arif Tasleem Jan
Obesity and obesity-related comorbidities have transformed into a global epidemic. The number of people suffering from obesity has increased dramatically within the past few decades. This rise in obesity cannot alone be explained by genetic factors; however, diet, environment, lifestyle, and presence of other diseases undoubtedly contribute towards obesity etiology. Nevertheless, evidence suggests that alterations in the gut microbial diversity and composition have a role to play in energy assimilation, storage, and expenditure. In this review, the impact of gut microbiota composition on metabolic functionalities, and potential therapeutics such as gut microbial modulation to manage obesity and its associated comorbidities are highlighted. Optimistically, an understanding of the gut microbiome could facilitate the innovative clinical strategies to restore the normal gut flora and improve lifestyle-related diseases in the future.
Pharmacological Reports | 2017
Jameel Lone; Jong Won Yun
BACKGROUND Induction of brown adipocyte-like phenotype (browning) in white adipocytes and promotion of apoptosis by dietary and pharmacological compounds is considered a novel strategy against obesity. Here, we show that honokiol exerts dual modulatory effects on adipocytes via induction of browning in 3T3-L1 white adipocytes and apoptosis as well as activation of HIB1B brown adipocytes combined with inhibition of apoptosis. METHODS Honokiol-induced browning and apoptosis were investigated by determining expression levels of brown adipocyte-specific genes and proteins by RT-PCR and immunoblot analysis, respectively. Apoptotic data were validated by immunofluorescence and ROS levels were measured by FACS analysis. RESULTS Honokiol treatment induced browning by elevating expression levels of brown adipocyte-specific genes such as Cidea, Cox8, Fgf21, Pgc-1α, and Ucp1. Honokiol promoted apoptosis of 3T3-L1 white adipocytes and inhibited apoptosis of HIB1B brown adipocytes via opposite regulation of the pro-apoptotic protein BAX and anti-apoptotic protein Bcl-2. Honokiol also significantly increased protein expression levels of ACOX1, CPT1, p-HSL, and p-PLIN and reduced ROS levels, suggesting its possible role in fat oxidation and lipid catabolism. Honokiol-induced browning could be mediated by activation of ERK, as inhibition of ERK by FR180204 abolished expression of PGC-1α and UCP1. CONCLUSION Our findings suggest that honokiol exhibits a modulatory role in adipocytes via induction of browning and apoptosis in white adipocytes, promotion of catabolic lipid metabolism, as well as activation and inhibition of apoptosis in HIB1B brown adipocytes, thereby exhibiting therapeutic potential against obesity.
Frontiers in Microbiology | 2017
Irfan A. Rather; Jameel Lone; Vivek K. Bajpai; Woon K. Paek; Jeongheui Lim
[This corrects the article on p. 1417 in vol. 8, PMID: 28798738.].
한국생물공학회 학술대회 | 2017
Jameel Lone; Jong Won Yun
한국생물공학회 학술대회 | 2015
Jameel Lone; Jae Heon Choi; Jong Won Yun