Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeongheui Lim is active.

Publication


Featured researches published by Jeongheui Lim.


Frontiers in Microbiology | 2016

Probiotics and Atopic Dermatitis: An Overview

Irfan A. Rather; Vivek K. Bajpai; Sanjay Kumar; Jeongheui Lim; Woon K. Paek; Yong-Ha Park

Atopic dermatitis (AD) is a common, recurrent, chronic inflammatory skin disease that is a cause of considerable economic and social burden. Its prevalence varies substantially among different countries with an incidence rate proclaimed to reach up to 20% of children in developed countries and continues to escalate in developing nations. This increased rate of incidence has changed the focus of research on AD toward epidemiology, prevention, and treatment. The effects of probiotics in the prevention and treatment of AD remain elusive. However, evidence from different research groups show that probiotics could have positive effect on AD treatment, if any, that depend on multiple factors, such as specific probiotic strains, time of administration (onset time), duration of exposure, and dosage. However, till date we still lack strong evidence to advocate the use of probiotics in the treatment of AD, and questions remain to be answered considering its clinical use in future. Based on updated information, the processes that facilitate the development of AD and the topic of the administration of probiotics are addressed in this review.


Frontiers in Microbiology | 2017

Zika Virus: An Emerging Worldwide Threat

Irfan A. Rather; Jameel B. Lone; Vivek K. Bajpai; Woon K. Paek; Jeongheui Lim

ZIKA virus (ZIKV) poses a severe threat to the world. Recent outbreaks of ZIKV after 2007 along with its quick transmission have made this virus a matter of international concern. The virus shows symptoms that are similar to those caused in the wake of dengue virus (DENV) and other flaviviruses, which makes it difficult to discern the viral infection. Diagnosis is further complicated as the virus cross-reacts with antibodies of other viruses. Currently, molecular diagnosis of the virus is being performed by RT-PCR and IgM-captured enzyme-linked immunosorbent assay (MAC-ELISA). The real brunt of the virus is, however, borne by children and adults alike. Case studies of the ZIKV outbreaks in the French Polynesia and other places have suggested that there is a close link between the ZIKV and Gullian-Barre syndrome (GBS). The GBS has closely followed in areas facing ZIKV outbreaks. Although solid evidence is yet to emerge, clinical data integration has revealed a large number of ZIKV patients having GBS. Moreover, the amniotic fluids, blood cord, and miscarriage tissues of mothers have been detected with ZIKV, which indicates that the virus either gets transferred from mother to fetus or seeks direct entry in the fetus, causing microcephaly and other brain anomalies in the newborn babies. Studies on mice have confirmed the link between the ZIKV infection during pregnancy and microcephaly in babies. Reports have highlighted the sexual transmission of the ZIKV, as it has been detected in the semen and saliva of affected persons. The intensity with which the ZIKA is spreading can collapse the health sector of several countries, which are poor. A comprehensive strategy is a need of an hour to combat this virus so as to prevent its transmission and avert the looming threat. At the same time, more research on the cure of the ZIKV is imperative.


Frontiers in Cellular and Infection Microbiology | 2017

Prevention and Control Strategies to Counter Dengue Virus Infection

Irfan A. Rather; Hilal Ahmad Parray; Jameel Lone; Woon K. Paek; Jeongheui Lim; Vivek K. Bajpai; Yong-Ha Park

Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.


Frontiers in Pharmacology | 2017

The Sources of Chemical Contaminants in Food and Their Health Implications

Irfan A. Rather; Wee Yin Koh; Woon K. Paek; Jeongheui Lim

Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed.


DARU | 2016

Characterization and pharmacological potential of Lactobacillus sakei 1I1 isolated from fresh water fish Zacco koreanus

Vivek K. Bajpai; Jeong Ho Han; Gyeong Jun Nam; Rajib Majumder; Chanseo Park; Jeongheui Lim; Woon K. Paek; Irfan A. Rather; Yong Ha Park

BackgroundThere are still a large variety of microorganisms among aquatic animals which have not been explored for their pharmacological potential. Hence, present study was aimed to isolate and characterize a potent lactic acid bacterium from fresh water fish sample Zacco koreanus, and to confirm its pharmacological potential.MethodsIsolation of lactic acid bacteria (LAB) from fresh water fish samples was done using serial dilution method. Biochemical identification and molecular characterization of selected LAB isolate 1I1, based on its potent antimicrobial efficacy, was accomplished using API kit and 16S rRNA gene sequencing analysis. Further, 1I1 was assessed for α-glucosidase and tyrosinase inhibitory potential as well as antiviral efficacy against highly pathogenic human influenza virus H1N1 using MDCK cell line in terms of its pharmacological potential.ResultsHere, we first time report isolation as well as biochemical and molecular characterization of a lactic acid bacterium Lactobacillus sakei 1I1 isolated from the intestine of a fresh water fish Z. koreanus. As a result, L. sakei 1I1 exhibited potent antimicrobial effect in vitro, and diameter of zones of inhibition of 1I1 against the tested pathogens was found in the range of 13.32u2009±u20090.51 to 23.16u2009±u20090.32xa0mm. Also L. sakei 1I1 at 100xa0mg/ml exhibited significant (pu2009<u20090.05) α–glucosidase and tyrosinase inhibitory activities by 60.69 and 72.59xa0%, in terms of its anti-diabetic and anti-melanogenic potential, respectively. Moreover, L. sakei 1I1 displayed profound anti-cytopathic effect on MDCK cell line when treated with its ethanol extract (100xa0mg/ml), confirming its potent anti-viral efficacy against H1N1 influenza virus.ConclusionsThese findings reinforce the suggestions that L. sakei 1I1 isolated from the intestine of fresh water fish Z. koreanus might be a candidate of choice for using in pharmacological preparations as an effective drug.


Frontiers in Microbiology | 2018

Probiotic Lactobacillus sakei proBio-65 extract ameliorates the severity of imiquimod induced psoriasis-like skin inflammation in a mouse model

Irfan A. Rather; Vivek K. Bajpai; Yun Suk Huh; Young-Kyu Han; Eijaz Ahmed Bhat; Jeongheui Lim; Woon K. Paek; Yong Ha Park

This study was designed to evaluate the protective effect of ethanol extract (SEL001) isolated from a potent probiotic strain Lactobacillus sakei proBio-65 on imiquimod (IMQ)-induced psoriasis-like skin inflammation in a mouse model. Histopathological and histomorphometrical changes in the ear and dorsal skin tissues were observed under hematoxylin and eosin stain for general histopathological architectures or Masson’s trichrome stain for collagen fibers. The expression profile of psoriasis-associated specific genes was determined using Real-Time PCR analysis. As a result, topical application of IMQ resulted in a significant increase of mean total and epithelial (epidermis) thicknesses, the number of inflammatory cells infiltrated in the dermis, and the decrease of dermis collagen fiber occupied regions in the ear tissues of IMQ and IMQ plus vaseline treated groups when compared to the intact control group. A significant increase of epithelial thickness and number of inflammatory cells infiltrated in the dermis of dorsal skin tissues were also noticed in IMQ and IMQ plus vaseline treated groups as compared to the intact control group, suggesting classic IMQ-induced hypersensitive psoriasis. IMQ-induced hypersensitive psoriasis related histopathological changes to the ear and dorsal skin tissues were significantly inhibited by the treatment of a standard drug clobetasol and SEL001. Further, mRNA expression analysis indicated a significant increase in gene expression levels of pro-inflammatory cytokines, including IL-19, IL-17A, and IL-23 in IMQ and IMQ plus vaseline treated groups than that of the control. Clobetasol and SEL001 treated groups resulted in a lower gene expression level of IL-19, IL-17A, and IL-23 as compared to IMQ and IMQ plus vaseline treated groups. These results enforce that SEL001 could be a novel treatment for psoriasis and an alternative to other drugs that pose a number of side effects on the skin.


Frontiers in Microbiology | 2017

Efficacy of (+)-Lariciresinol to Control Bacterial Growth of Staphylococcus aureus and Escherichia coli O157:H7

Vivek K. Bajpai; Shruti Shukla; Woon K. Paek; Jeongheui Lim; Pradeep Kumar; Pankaj Kumar; MinKyun Na

This study was undertaken to assess the antibacterial potential of a polyphenolic compound (+)-lariciresinol isolated from Rubia philippinensis against selected foodborne pathogens Staphylococcus aureus KCTC1621 and Escherichia coli O157:H7. (+)-Lariciresinol at the tested concentrations (250 μg/disk) evoked a significant antibacterial effect as a diameter of inhibition zones (12.1–14.9 mm) with minimum inhibitory concentration (MIC), and minimum bactericidal concentration values of 125–250 and 125–250 μg/mL, respectively. Furthermore, (+)-lariciresinol at MIC showed reduction in bacterial cell viabilities, efflux of potassium (K+) ions and release of 260 nm materials against E. coli O157:H7 and S. aureus KCTC1621. Moreover, deteriorated cell wall morphology of E. coli O157:H7 and S. aureus KCTC1621 cells treated with (+)-lariciresinol at MIC further confirmed its inhibitory effect against the tested pathogens, suggesting it to be an alternative means of antimicrobials.


Frontiers in Microbiology | 2017

Antibacterial Action of Jineol Isolated from Scolopendra subspinipes mutilans against Selected Foodborne Pathogens

Vivek K. Bajpai; Shruti Shukla; Woon K. Paek; Jeongheui Lim; Pradeep Kumar; MinKyun Na

This study was undertaken to assess the antibacterial potential of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans against selected foodborne pathogens Escherichia coli O157:H7 and Staphylococcus aureus KCTC-1621. Jineol at the tested concentration (50 μL; corresponding to 250 μg/disk) exhibited significant antibacterial effects as a diameter of inhibition zones (11.6–13.6 mm), along with minimum inhibitory concentration (MIC) and minimum bactericidal concentration values found in the range of (62.5–125 μg/mL) and (125–250 μg/mL), respectively. Jineol also exhibited significant antibacterial effects as confirmed by the reduction in bacterial cell viabilities, increasing release of potassium (K+) ions (650 and 700 mmole/L) and 260 nm materials (optical density: 2.98–3.12) against both the tested pathogens, E. coli O157:H7 and S. aureus KCTC-1621, respectively. Moreover, changes in the cell wall morphology of E. coli O157:H7 and S. aureus KCTC-1621 cells treated with jineol at MIC further confirmed its inhibitory potential against the tested pathogens, suggesting its role as an effective antimicrobial to control foodborne pathogens.


Frontiers in Microbiology | 2016

Characterization and Antibacterial Potential of Lactic Acid Bacterium Pediococcus pentosaceus 4I1 Isolated from Freshwater Fish Zacco koreanus

Vivek K. Bajpai; Jeong-Ho Han; Irfan A. Rather; Chanseo Park; Jeongheui Lim; Woon K. Paek; Jong Sung Lee; Jung-In Yoon; Yong-Ha Park

This study was undertaken to characterize a lactic acid bacterium 4I1, isolated from the freshwater fish, Zacco koreanus. Morphological, biochemical, and molecular characterization of 4I1 revealed it to be Pediococcus pentosaceus 4I1. The cell free supernatant (CFS) of P. pentosaceus 4I1 exhibited significant (p < 0.05) antibacterial effects (inhibition zone diameters: 16.5–20.4 mm) against tested foodborne pathogenic bacteria with MIC and MBC values of 250–500 and 500–1,000 μg/mL, respectively. Further, antibacterial action of CFS of P. pentosaceus 4I1 against two selected bacteria Staphylococcus aureus KCTC-1621 and Escherichia coli O157:H7 was determined in subsequent assays. The CFS of P. pentosaceus 4I1 revealed its antibacterial action against S. aureus KCTC-1621 and E. coli O157:H7 on membrane integrity as confirmed by a reduction in cell viability, increased potassium ion release (900 and 800 mmol/L), reduced absorption at 260-nm (3.99 and 3.77 OD), and increased relative electrical conductivity (9.9 and 9.7%), respectively. Gas chromatography–mass spectrometry (GC–MS) analysis of the CFS of P. pentosaceus 4I1 resulted in the identification of seven major compounds, which included amino acids, fatty acids and organic acids. Scanning electron microscopic-based morphological analysis further confirmed the antibacterial effect of CFS of P. pentosaceus 4I1 against S. aureus KCTC-1621 and E. coli O157:H7. In addition, the CFS of P. Pentosaceus 4I1 displayed potent inhibitory effects on biofilms formation by S. aureus KCTC-1621 and E. coli O157:H7. The study indicates the CFS of P. pentosaceus 4I1 offers an alternative means of controlling foodborne pathogens.


Microbial Pathogenesis | 2018

Gut microbiome: Microflora association with obesity and obesity-related comorbidities

Jameel Lone; Wee Yin Koh; Hilal Ahmad Parray; Woon K. Paek; Jeongheui Lim; Irfan A. Rather; Arif Tasleem Jan

Obesity and obesity-related comorbidities have transformed into a global epidemic. The number of people suffering from obesity has increased dramatically within the past few decades. This rise in obesity cannot alone be explained by genetic factors; however, diet, environment, lifestyle, and presence of other diseases undoubtedly contribute towards obesity etiology. Nevertheless, evidence suggests that alterations in the gut microbial diversity and composition have a role to play in energy assimilation, storage, and expenditure. In this review, the impact of gut microbiota composition on metabolic functionalities, and potential therapeutics such as gut microbial modulation to manage obesity and its associated comorbidities are highlighted. Optimistically, an understanding of the gut microbiome could facilitate the innovative clinical strategies to restore the normal gut flora and improve lifestyle-related diseases in the future.

Collaboration


Dive into the Jeongheui Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

MinKyun Na

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge