Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. DeCaprio is active.

Publication


Featured researches published by James A. DeCaprio.


Cell | 1988

SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene

James A. DeCaprio; John W. Ludlow; James Figge; Jin-Yuh Shew; Chun-Ming Huang; Wen-Hwa Lee; Erika Marsilio; Eva Paucha; David M. Livingston

Monkey cells synthesizing SV40 large T antigen were lysed and the extracts immunoprecipitated with either monoclonal anti-T antibody or monoclonal antibody to p110-114, the product of the retinoblastoma susceptibility gene (Rb). T and p110-114 coprecipitated in each case, implying that the proteins are complexed with each other. Substitution and internal deletion mutants of T that contain structural alterations in a ten residue, transformation-controlling domain failed to complex with p110-114. In contrast, T mutants bearing structural changes outside of this domain bound to p110-114. These results are consistent with a model for transformation by SV40 which, at least in part, involves T/p110-114 complex formation and the perturbation of Rb protein and/or T function.


Cell | 1989

The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element

James A. DeCaprio; John W. Ludlow; Dennis C. Lynch; Yusuke Furukawa; James D. Griffin; Helen Piwnica-Worms; Chun-Ming Huang; David M. Livingston

The retinoblastoma susceptibility gene product, Rb, is suspected to suppress cell growth. Rb is a 110-114 kd nuclear phosphoprotein. We have previously demonstrated that SV40 T antigen binds only to unphosphorylated Rb, and not pp112-114Rb, the family of phosphorylated Rb. Here we demonstrate the cell cycle-dependent phosphorylation of Rb. In G0/G1 cells, virtually all the Rb is unphosphorylated. In contrast, during S and G2, it is largely, if not exclusively, phosphorylated. Rb phosphorylation occurs at the G1/S boundary in several cell types tested. A 14 residue peptide, corresponding to the SV40 T domain required for transformation, is able to compete effectively with SV40 T for binding to p110Rb. We propose a model to explain how Rb may suppress cell growth by acting as a cell cycle regulatory element.


Cell | 1990

Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation

Marikki Laiho; James A. DeCaprio; John W. Ludlow; David M. Livingston; Joan Massagué

The growth-suppressive function of the retinoblastoma gene product, RB, has been ascribed to the underphosphorylated RB form that prevails during G1 phase in the cell cycle. We show that addition of the paracrine growth inhibitor transforming growth factor beta 1 (TGF-beta 1) to Mv1Lu lung epithelial cells in mid to late G1 prevents phosphorylation of RB scheduled for this cell cycle stage and arrests cells in late G1. Expression of SV40 T antigen, a transforming protein that binds underphosphorylated RB, does not block the effect of TGF-beta 1 on RB phosphorylation but greatly reduces the growth-inhibitory response to TGF-beta 1. TGF-beta 1 and RB appear to function in a common growth-inhibitory pathway in which TGF-beta 1 acts to retain RB in the underphosphorylated, growth-suppressive state.


Nature | 1997

Binding and modulation of p53 by p300/CBP coactivators.

Nancy L. Lill; Steven R. Grossman; D Ginsberg; James A. DeCaprio; David M. Livingston

The adenovirus E1A and SV40 large-T-antigen oncoproteins bind to members of the p300/CBP transcriptional coactivator family. Binding of p300/CBP is implicated in the transforming mechanisms of E1A and T-antigen oncoproteins. A common region of the T antigen is critical for binding both p300/CBP and the tumour suppressor p53 (ref. 1), suggesting a link between the functions of p53 and p300. Here we report that p300/CBP binds to p53 in the absence of viral oncoproteins, and that p300 and p53 colocalize within the nucleus and coexist in a stable DNA-binding complex. Consistent with its ability to bind to p300, E1A disrupted functions mediated by p53. It reduced p53-mediated activation of the p21 and bax promoters, and suppressed p53-induced cell-cycle arrest and apoptosis. We conclude that members of the p300/CBP family are transcriptional adaptors for p53, modulating its checkpoint function in the G1 phase of the cell cycle and its induction of apoptosis. Disruption of p300/p53-dependent growth control may be part of the mechanism by which E1A induces cell transformation. These results help to explain how p53 mediates growth and checkpoint control, and how members of the p300/CBP family affect progression from G1 to the S phase of the cell cycle.


Science | 1995

Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C

Adam S. Kibel; Othon Iliopoulos; James A. DeCaprio; William G. Kaelin

Germ-line mutations of the von Hippel-Lindau tumor suppressor gene (VHL) predispose individuals to a variety of human tumors, and somatic mutations of this gene have been identified in sporadic renal cell carcinomas and cerebellar hemangioblastomas. Two transcriptional elongation factors, Elongin B and C, were shown to bind in vitro and in vivo to a short, colinear region of the VHL protein (pVHL) that is frequently mutated in human tumors. A peptide replica of this region inhibited binding of pVHL to Elongin B and C whereas a point-mutant derivative, corresponding to a naturally occurring VHL missense mutation, had no effect. These results suggest that the tumor suppression function of pVHL may be linked to its ability to bind to Elongin B and C.


Molecular and Cellular Biology | 2002

Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation

William C. Hahn; Scott K. Dessain; Mary W. Brooks; Jessie E. King; Brian Elenbaas; David M. Sabatini; James A. DeCaprio; Robert A. Weinberg

ABSTRACT While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.


Journal of Cell Biology | 2002

14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport

Anne Brunet; Fumihiko Kanai; Justine R. Stehn; Jian Xu; Dilara Sarbassova; John V. Frangioni; Sorab N. Dalal; James A. DeCaprio; Michael E. Greenberg; Michael B. Yaffe

14-3-3 proteins regulate the cell cycle and prevent apoptosis by controlling the nuclear and cytoplasmic distribution of signaling molecules with which they interact. Although the majority of 14-3-3 molecules are present in the cytoplasm, we show here that in the absence of bound ligands 14-3-3 homes to the nucleus. We demonstrate that phosphorylation of one important 14-3-3 binding molecule, the transcription factor FKHRL1, at the 14-3-3 binding site occurs within the nucleus immediately before FKHRL1 relocalization to the cytoplasm. We show that the leucine-rich region within the COOH-terminal α-helix of 14-3-3, which had been proposed to function as a nuclear export signal (NES), instead functions globally in ligand binding and does not directly mediate nuclear transport. Efficient nuclear export of FKHRL1 requires both intrinsic NES sequences within FKHRL1 and phosphorylation/14-3-3 binding. Finally, we present evidence that phosphorylation/14-3-3 binding may also prevent FKHRL1 nuclear reimport. These results indicate that 14-3-3 can mediate the relocalization of nuclear ligands by several mechanisms that ensure complete sequestration of the bound 14-3-3 complex in the cytoplasm.


Cell | 1991

Identification of cellular proteins that can interact specifically with the T/ElA-binding region of the retinoblastoma gene product

William G. Kaelin; David C. Pallas; James A. DeCaprio; Frederic J. Kaye; David M. Livingston

The SV40 T antigen (T)/adenovirus E1A-binding domain of the retinoblastoma gene product (pRB) has been fused to S. japonicum glutathione S-transferase, and the chimera, bound to insoluble glutathione, was used to search for cellular proteins that can interact specifically with pRB. At least seven such proteins were detected in extracts of multiple human tumor cell lines. These proteins failed to bind to a family of pRB fusion proteins that harbor inactivating mutations in the T/E1A-binding domain and to the wild-type fusion protein in the presence of a peptide replica of the pRB-binding domain of T. Therefore, the binding of one or more of these proteins may contribute to the growth-suppressing function of pRB.


Cell | 1989

SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family.

John W. Ludlow; James A. DeCaprio; Chun-Ming Huang; Wen-Hwa Lee; Eva Paucha; David M. Livingston

Extracts of monkey cells (CV-1P) synthesizing SV40 large T antigen (T) were immunoprecipitated with monoclonal antibodies to T or p110-114Rb, the product of the retinoblastoma susceptibility gene (Rb). While a family of p110-114Rb proteins can be detected in anti-Rb immunoprecipitates, only one member of this family, p110Rb, was found in anti-T precipitates of these extracts. Identical results were obtained with extracts of CV-1P cells which had been previously mixed in vitro with highly purified T. The p110-114Rb family is composed of two sets--p110Rb, an un- or under-phosphorylated species, and pp112-114Rb, a group of overtly phosphorylated proteins. Thus, T bound preferentially to the un- or underphosphorylated member of the family. In addition, T failed to alter the relative abundances of these species. These results suggest a model in which the growth suppression function of Rb is down modulated either by phosphorylation or T antigen binding.


Cell | 1990

The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T.

John W. Ludlow; John Shon; James M. Pipas; David M. Livingston; James A. DeCaprio

Synchronized monkey cells pulse-labeled with [35S]-methionine and chased for various lengths of time were extracted, and immunoprecipitations were performed using monoclonal antibodies directed against the retinoblastoma protein (RB) and SV40 T antigen (T). By following a discrete population of these two proteins through the cell cycle, the following information was obtained. RB, which is wholly unphosphorylated in G1, became phosphorylated at the beginning of S and remained phosphorylated through S and G2. RB was, then, completely dephosphorylated between the end of G2 and the beginning of G1. Second, while all of the detectable unphosphorylated RB can be found complexed with T, these complexes present during G1 dissociated in S and reformed again in M or early G1. Finally, T molecules appeared to oligomerize prior to binding RB. Thus, complex formation between T and RB may be regulated in part by the cell cycle-dependent phosphorylation and dephosphorylation of RB and by the quaternary structure of T.

Collaboration


Dive into the James A. DeCaprio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larisa Litovchick

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth C. Anderson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge