Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larisa Litovchick is active.

Publication


Featured researches published by Larisa Litovchick.


Nature | 2012

Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins

Orit Rozenblatt-Rosen; Rahul C. Deo; Megha Padi; Guillaume Adelmant; Michael A. Calderwood; Thomas Rolland; Miranda Grace; Amélie Dricot; Manor Askenazi; Maria Lurdes Tavares; Sam Pevzner; Fieda Abderazzaq; Danielle Byrdsong; Anne-Ruxandra Carvunis; Alyce A. Chen; Jingwei Cheng; Mick Correll; Melissa Duarte; Changyu Fan; Scott B. Ficarro; Rachel Franchi; Brijesh K. Garg; Natali Gulbahce; Tong Hao; Amy M. Holthaus; Robert James; Anna Korkhin; Larisa Litovchick; Jessica C. Mar; Theodore R. Pak

Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype–phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or ‘passenger’, cancer mutations from causal, or ‘driver’, mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer.


Genes & Development | 2011

DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly

Larisa Litovchick; Laurence Florens; Selene K. Swanson; Michael P. Washburn; James A. DeCaprio

In the absence of growth signals, cells exit the cell cycle and enter into G0 or quiescence. Alternatively, cells enter senescence in response to inappropriate growth signals such as oncogene expression. The molecular mechanisms required for cell cycle exit into quiescence or senescence are poorly understood. The DREAM (DP, RB [retinoblastoma], E2F, and MuvB) complex represses cell cycle-dependent genes during quiescence. DREAM contains p130, E2F4, DP1, and a stable core complex of five MuvB-like proteins: LIN9, LIN37, LIN52, LIN54, and RBBP4. In mammalian cells, the MuvB core dissociates from p130 upon entry into the cell cycle and binds to BMYB during S phase to activate the transcription of genes expressed late in the cell cycle. We used mass spectroscopic analysis to identify phosphorylation sites that regulate the switch of the MuvB core from BMYB to DREAM. Here we report that DYRK1A can specifically phosphorylate LIN52 on serine residue 28, and that this phosphorylation is required for DREAM assembly. Inhibiting DYRK1A activity or point mutation of LIN52 disrupts DREAM assembly and reduces the ability of cells to enter quiescence or undergo Ras-induced senescence. These data reveal an important role for DYRK1A in the regulation of DREAM activity and entry into quiescence.


Genes & Development | 2011

A kinase shRNA screen links LATS2 and the pRB tumor suppressor

Katrin Tschöp; Andrew R. Conery; Larisa Litovchick; James A. DeCaprio; Jeffrey Settleman; Ed Harlow; Nicholas J. Dyson

pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRBs ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells.


Molecular and Cellular Biology | 2002

Nucleocytoplasmic Shuttling of p130/RBL2: Novel Regulatory Mechanism

Anton Chestukhin; Larisa Litovchick; Katherine Rudich; James A. DeCaprio

ABSTRACT The retinoblastoma-related pocket proteins pRb, p107, and p130 are implicated in the control of cell proliferation, differentiation, and transformation. The function of pocket proteins is in part mediated by their ability to inhibit specific E2F transcription factors. The transcriptional activity of E2Fs is controlled by alteration of their nucleocytoplasmic localization during the cell cycle. p130 was observed to shuttle between the nucleus and cytoplasm in a heterokaryon fusion assay, suggesting the presence of nuclear and cytoplasmic localization signals. Two independent nuclear localization signals (NLS) that could target reporter proteins to the nucleus in transient transfection and microinjection experiments were identified in the C terminus of p130. In addition to the C-terminal NLS, the intact pocket domain of p130 itself was sufficient for nuclear translocation. Moreover, an additional functional NLS was mapped within the unique Loop region of p130. An N-terminal domain that conferred cytoplasmic localization was identified. Removal of the entire N terminus did not affect the ability of p130 to interact with E2F and to induce growth arrest. A model suggesting that the activity of pRb family members can be regulated by intracellular trafficking of the proteins is proposed.


Molecular and Cellular Biology | 2004

Glycogen Synthase Kinase 3 Phosphorylates RBL2/p130 during Quiescence

Larisa Litovchick; Anton Chestukhin; James A. DeCaprio

ABSTRACT Phosphorylation of the retinoblastoma-related or pocket proteins RB1/pRb, RBL1/p107, and RBL2/p130 regulates cell cycle progression and exit. While all pocket proteins are phosphorylated by cyclin-dependent kinases (CDKs) during the G1/S-phase transition, p130 is also specifically phosphorylated in G0-arrested cells. We have previously identified several phosphorylated residues that match the consensus site for glycogen synthase kinase 3 (GSK3) in the G0 form of p130. Using small-molecule inhibitors of GSK3, site-specific mutants of p130, and phospho-specific antibodies, we demonstrate here that GSK3 phosphorylates p130 during G0. Phosphorylation of p130 by GSK3 contributes to the stability of p130 but does not affect its ability to interact with E2F4 or cyclins. Regulation of p130 by GSK3 provides a novel link between growth factor signaling and regulation of the cell cycle progression and exit.


Journal of Biological Chemistry | 1997

Unveiling the substrate specificity of meprin beta on the basis of the site in protein kinase A cleaved by the kinase splitting membranal proteinase.

Anton Chestukhin; Larisa Litovchick; Khakim Muradov; Misha Batkin; Shmuel Shaltiel

The kinase splitting membranal proteinase (KSMP) is a metalloendopeptidase that inactivates the catalytic (C) subunit of protein kinase A (PKA) by clipping off its carboxyl terminal tail. Here we show that this cleavage occurs at Glu332-Glu333, within the cluster of acidic amino acids (Asp328-Glu334) of the kinase. The Km values of KSMP and of meprin β (which reproduces KSMP activity) for the C-subunit are below 1 μM. The Km for peptides containing a stretch of four Glu residues are in the micromolar range, illustrating the significant contribution of this cluster to the substrate recognition of meprin β. This conclusion is supported by a systematic study using a series of the C-subunit mutants with deletions and mutations in the cluster of acidics. Hydrophobic amino acids vicinal to the cleavage site increase the Kcat of the proteinase. These studies unveil a new specificity for meprin β, suggesting new substrates that are 1-2 orders of magnitude better in their Km and Kcat than those commonly used for meprin assay. A search for substrates having such a cluster of acidics and hydrophobics, which are accessible to meprin under physiological conditions, point at gastrin as a potential target. Indeed, meprin β is shown to cleave gastrin at its cluster of five glutamic acid residues and also at the M-D bond within its WMDF-NH2 sequence, which is indispensable for all the known biological activities of gastrins. The latter meprin cleavage will lead to the inactivation of gastrin and thus to the control of its activity.


Nucleic Acids Research | 2012

The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

Gerd Müller; Marianne Quaas; Michael Schümann; Eberhard Krause; Megha Padi; Martin Fischer; Larisa Litovchick; James A. DeCaprio; Kurt Engeland

Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.


Oncogene | 2000

Phosphorylation of the retinoblastoma-related protein p130 in growth-arrested cells

Alfredo J Canhoto; Anton Chestukhin; Larisa Litovchick; James A. DeCaprio

The retinoblastoma family of proteins including pRB, p107 and p130 undergoes cell cycle dependent phosphorylation during the mid-G1 to S phase transition. This phosphorylation is dependent upon the activity of cyclin D/cdk4. In contrast to pRB and p107, p130 is phosphorylated during G0 and the early G1 phase of the cell cycle. We observed that p130 is specifically phosphorylated on serine and threonine residues in T98G cells arrested in G0 by serum deprivation or density arrest. Identification of the phospho-serine and phospho-threonine residues revealed that most were clustered within a short co-linear region unique to p130, defined as the Loop. Deletion of the Loop region resulted in a change in the phosphorylation status of p130 under growth arrest conditions. Notably, deletion of the Loop did not affect the ability of p130 to bind to E2F-4 or SV40 Large T antigen, to induce growth arrest in Saos-2 cells, and to become hyperphosphorylated during the proliferative phase of the cell cycle. p130 undergoes specific G0 phosphorylation in a manner that distinguishes it from pRB and p107.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation

Michael L. Beshiri; Katherine B. Holmes; William F. Richter; Samuel Hess; Abul B.M.M.K. Islam; Qin Yan; Lydia Plante; Larisa Litovchick; Nicolas Gévry; Nuria Lopez-Bigas; William G. Kaelin; Elizaveta V. Benevolenskaya

Epigenetic regulation underlies the robust changes in gene expression that occur during development. How precisely epigenetic enzymes contribute to development and differentiation processes is largely unclear. Here we show that one of the enzymes that removes the activating epigenetic mark of trimethylated lysine 4 on histone H3, lysine (K)-specific demethylase 5A (KDM5A), reinforces the effects of the retinoblastoma (RB) family of transcriptional repressors on differentiation. Global location analysis showed that KDM5A cooccupies a substantial portion of target genes with the E2F4 transcription factor. During ES cell differentiation, knockout of KDM5A resulted in derepression of multiple genomic loci that are targets of KDM5A, denoting a direct regulatory function. In terminally differentiated cells, common KDM5A and E2F4 gene targets were bound by the pRB-related protein p130, a DREAM complex component. KDM5A was recruited to the transcription start site regions independently of E2F4; however, it cooperated with E2F4 to promote a state of deepened repression at cell cycle genes during differentiation. These findings reveal a critical role of H3K4 demethylation by KDM5A in the transcriptional silencing of genes that are suppressed by RB family members in differentiated cells.


Cancer Research | 2013

The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis

Sergei Boichuk; Joshua A. Parry; Kathleen R. Makielski; Larisa Litovchick; Julianne L. Baron; James Zewe; Agnieszka Wozniak; Keith R. Mehalek; Nina Korzeniewski; Danushka S. Seneviratne; Patrick Schöffski; Maria Debiec-Rychter; James A. DeCaprio; Anette Duensing

Gastrointestinal stromal tumors (GIST) can be successfully treated with imatinib mesylate (Gleevec); however, complete remissions are rare and patients frequently achieve disease stabilization in the presence of residual tumor masses. The clinical observation that discontinuation of treatment can lead to tumor progression suggests that residual tumor cells are, in fact, quiescent and, therefore, able to re-enter the cell-division cycle. In line with this notion, we have previously shown that imatinib induces GIST cell quiescence in vitro through the APC(CDH1)-SKP2-p27(Kip1) signaling axis. Here, we provide evidence that imatinib induces GIST cell quiescence in vivo and that this process also involves the DREAM complex, a multisubunit complex that has recently been identified as an additional key regulator of quiescence. Importantly, inhibition of DREAM complex formation by depletion of the DREAM regulatory kinase DYRK1A or its target LIN52 was found to enhance imatinib-induced cell death. Our results show that imatinib induces apoptosis in a fraction of GIST cells while, at the same time, a subset of cells undergoes quiescence involving the DREAM complex. Inhibition of this process enhances imatinib-induced apoptosis, which opens the opportunity for future therapeutic interventions to target the DREAM complex for more efficient imatinib responses.

Collaboration


Dive into the Larisa Litovchick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siddharth Saini

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Anton Chestukhin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Shmuel Shaltiel

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Audra N. Iness

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Fatmata Sesay

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Seth M. Rubin

University of California

View shared research outputs
Top Co-Authors

Avatar

Varsha Ananthapadmanabhan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jessica Felthousen

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge