Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Fagin is active.

Publication


Featured researches published by James A. Fagin.


Journal of Clinical Oncology | 2012

Vandetanib in Patients With Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial

Samuel A. Wells; Bruce G. Robinson; Robert F. Gagel; Henning Dralle; James A. Fagin; Massimo Santoro; Eric Baudin; Rossella Elisei; Barbara Jarzab; Jessica Read; Peter Langmuir; Anderson J. Ryan; Martin Schlumberger

PURPOSE There is no effective therapy for patients with advanced medullary thyroid carcinoma (MTC). Vandetanib, a once-daily oral inhibitor of RET kinase, vascular endothelial growth factor receptor, and epidermal growth factor receptor signaling, has previously shown antitumor activity in a phase II study of patients with advanced hereditary MTC. PATIENTS AND METHODS Patients with advanced MTC were randomly assigned in a 2:1 ratio to receive vandetanib 300 mg/d or placebo. On objective disease progression, patients could elect to receive open-label vandetanib. The primary end point was progression-free survival (PFS), determined by independent central Response Evaluation Criteria in Solid Tumors (RECIST) assessments. RESULTS Between December 2006 and November 2007, 331 patients (mean age, 52 years; 90% sporadic; 95% metastatic) were randomly assigned to receive vandetanib (231) or placebo (100). At data cutoff (July 2009; median follow-up, 24 months), 37% of patients had progressed and 15% had died. The study met its primary objective of PFS prolongation with vandetanib versus placebo (hazard ratio [HR], 0.46; 95% CI, 0.31 to 0.69; P < .001). Statistically significant advantages for vandetanib were also seen for objective response rate (P < .001), disease control rate (P = .001), and biochemical response (P < .001). Overall survival data were immature at data cutoff (HR, 0.89; 95% CI, 0.48 to 1.65). A final survival analysis will take place when 50% of the patients have died. Common adverse events (any grade) occurred more frequently with vandetanib compared with placebo, including diarrhea (56% v 26%), rash (45% v 11%), nausea (33% v 16%), hypertension (32% v 5%), and headache (26% v 9%). CONCLUSION Vandetanib demonstrated therapeutic efficacy in a phase III trial of patients with advanced MTC (ClinicalTrials.gov NCT00410761).


The Journal of Clinical Endocrinology and Metabolism | 2009

Molecular Testing for Mutations in Improving the Fine-Needle Aspiration Diagnosis of Thyroid Nodules

Yuri E. Nikiforov; David L. Steward; Toni Robinson-Smith; Bryan R. Haugen; Joshua Klopper; Zhaowen Zhu; James A. Fagin; Mercedes Falciglia; Katherine Weber; Marina N. Nikiforova

CONTEXT Thyroid nodules are common in adults, but only a small fraction of them are malignant. Fine-needle aspiration (FNA) with cytological evaluation is the most reliable tool for cancer diagnosis in thyroid nodules. However, 10-40% of nodules are diagnosed as indeterminate by cytology, making it difficult to optimally manage these patients. OBJECTIVE The aim of this study was to establish the feasibility and role of testing for tumor-specific mutations in improving the FNA diagnosis of thyroid nodules. DESIGN The prospective study included 470 FNA samples of thyroid nodules from 328 patients. At the time of aspiration, a small portion of the material was collected and tested for BRAF, RAS, RET/PTC, and PAX8/PPARgamma mutations. The mutational status was correlated with cytology and either surgical pathology diagnosis or follow-up (mean, 34 months). RESULTS A sufficient amount of nucleic acids were isolated in 98% of samples. Thirty-two mutations were found, including 18 BRAF, eight RAS, five RET/PTC, and one PAX8/PPARgamma. The presence of any mutation was a strong indicator of cancer because 31 (97%) of mutation-positive nodules had a malignant diagnosis after surgery. A combination of cytology and molecular testing showed significant improvement in the diagnostic accuracy and allowed better prediction of malignancy in the nodules with indeterminate cytology. CONCLUSIONS These results indicate that molecular testing of thyroid nodules for a panel of mutations can be effectively performed in a clinical setting. It enhances the accuracy of FNA cytology and is of particular value for thyroid nodules with indeterminate cytology.


Thyroid | 2010

Estimating Risk of Recurrence in Differentiated Thyroid Cancer After Total Thyroidectomy and Radioactive Iodine Remnant Ablation: Using Response to Therapy Variables to Modify the Initial Risk Estimates Predicted by the New American Thyroid Association Staging System

R. Michael Tuttle; Hernán Tala; Jatin P. Shah; Rebecca Leboeuf; Ronald Ghossein; Mithat Gonen; Matvey Brokhin; Gal Omry; James A. Fagin; Ashok R. Shaha

BACKGROUND A risk-adapted approach to management of thyroid cancer requires risk estimates that change over time based on response to therapy and the course of the disease. The objective of this study was to validate the American Thyroid Association (ATA) risk of recurrence staging system and determine if an assessment of response to therapy during the first 2 years of follow-up can modify these initial risk estimates. METHODS This retrospective review identified 588 adult follicular cell-derived thyroid cancer patients followed for a median of 7 years (range 1-15 years) after total thyroidectomy and radioactive iodine remnant ablation. Patients were stratified according to ATA risk categories (low, intermediate, or high) as part of initial staging. Clinical data obtained during the first 2 years of follow-up (suppressed thyroglobulin [Tg], stimulated Tg, and imaging studies) were used to re-stage each patient based on response to initial therapy (excellent, acceptable, or incomplete). Clinical outcomes predicted by initial ATA risk categories were compared with revised risk estimates obtained after response to therapy variables were used to modify the initial ATA risk estimates. RESULTS Persistent structural disease or recurrence was identified in 3% of the low-risk, 21% of the intermediate-risk, and 68% of the high-risk patients (p < 0.001). Re-stratification during the first 2 years of follow-up reduced the likelihood of finding persistent structural disease or recurrence to 2% in low-risk, 2% in intermediate-risk, and 14% in high-risk patients, demonstrating an excellent response to therapy (stimulated Tg < 1 ng/mL without structural evidence of disease). Conversely, an incomplete response to initial therapy (suppressed Tg > 1 ng/mL, stimulated Tg > 10 ng/mL, rising Tg values, or structural disease identification within the first 2 years of follow-up) increased the likelihood of persistent structural disease or recurrence to 13% in low-risk, 41% in intermediate-risk, and 79% in high-risk patients. CONCLUSIONS Our data confirm that the newly proposed ATA recurrence staging system effectively predicts the risk of recurrence and persistent disease. Further, these initial ATA risk estimates can be significantly refined based on the assessment of response to initial therapy, thereby providing a dynamic risk assessment that can be used to more effectively tailor ongoing follow-up recommendations.


The Journal of Clinical Endocrinology and Metabolism | 2008

Deoxyribonucleic Acid Profiling Analysis of 40 Human Thyroid Cancer Cell Lines Reveals Cross-Contamination Resulting in Cell Line Redundancy and Misidentification

Rebecca E. Schweppe; Joshua Klopper; Christopher Korch; Umarani Pugazhenthi; Miriam Benezra; Jeffrey A. Knauf; James A. Fagin; Laura A. Marlow; John A. Copland; Robert C. Smallridge; Bryan R. Haugen

CONTEXT Cell lines derived from human cancers provide critical tools to study disease mechanisms and develop novel therapies. Recent reports indicate that up to 36% of cell lines are cross- contaminated. OBJECTIVE We evaluated 40 reported thyroid cancer-derived cell lines using short tandem repeat and single nucleotide polymorphism array analysis. RESULTS Only 23 of 40 cell lines tested have unique genetic profiles. The following groups of cell lines are likely derivatives of the same cell line: BHP5-16, BHP17-10, BHP14-9, and NPA87; BHP2-7, BHP10-3, BHP7-13, and TPC1; KAT5, KAT10, KAT4, KAT7, KAT50, KAK1, ARO81-1, and MRO87-1; and K1 and K2. The unique cell lines include BCPAP, KTC1, TT2609-C02, FTC133, ML1, WRO82-1, 8505C, SW1736, Cal-62, T235, T238, Uhth-104, ACT-1, HTh74, KAT18, TTA1, FRO81-2, HTh7, C643, BHT101, and KTC-2. The misidentified cell lines included the DRO90-1, which matched the melanoma-derived cell line, A-375. The ARO81-1 and its derivatives matched the HT-29 colon cancer cell line, and the NPA87 and its derivatives matched the M14/MDA-MB-435S melanoma cell line. TTF-1 and Pax-8 mRNA levels were determined in the unique cell lines. CONCLUSIONS Many of these human cell lines have been widely used in the thyroid cancer field for the past 20 yr and are not only redundant, but not of thyroid origin. These results emphasize the importance of cell line integrity, and provide the short tandem repeat profiles for a panel of thyroid cancer cell lines that can be used as a reference for comparison of cell lines from other laboratories.


JAMA | 2013

Association Between BRAF V600E Mutation and Mortality in Patients With Papillary Thyroid Cancer

Mingzhao Xing; Ali S. Alzahrani; Kathryn A. Carson; David Viola; Rossella Elisei; Bela Bendlova; Linwah Yip; Caterina Mian; Federica Vianello; R. Michael Tuttle; Eyal Robenshtok; James A. Fagin; Efisio Puxeddu; Laura Fugazzola; Agnieszka Czarniecka; Barbara Jarzab; Christine J. O’Neill; Mark S. Sywak; Alfred King-Yin Lam; Garcilaso Riesco-Eizaguirre; Pilar Santisteban; Hirotaka Nakayama; Ralph P. Tufano; Sara I. Pai; Martha A. Zeiger; William H. Westra; Douglas P. Clark; Roderick J. Clifton-Bligh; David Sidransky; Paul W. Ladenson

IMPORTANCE BRAF V600E is a prominent oncogene in papillary thyroid cancer (PTC), but its role in PTC-related patient mortality has not been established. OBJECTIVE To investigate the relationship between BRAF V600E mutation and PTC-related mortality. DESIGN, SETTING, AND PARTICIPANTS Retrospective study of 1849 patients (1411 women and 438 men) with a median age of 46 years (interquartile range, 34-58 years) and an overall median follow-up time of 33 months (interquartile range, 13-67 months) after initial treatment at 13 centers in 7 countries between 1978 and 2011. MAIN OUTCOMES AND MEASURES Patient deaths specifically caused by PTC. RESULTS Overall, mortality was 5.3% (45/845; 95% CI, 3.9%-7.1%) vs 1.1% (11/1004; 95% CI, 0.5%-2.0%) (P < .001) in BRAF V600E-positive vs mutation-negative patients. Deaths per 1000 person-years in the analysis of all PTC were 12.87 (95% CI, 9.61-17.24) vs 2.52 (95% CI, 1.40-4.55) in BRAF V600E-positive vs mutation-negative patients; the hazard ratio (HR) was 2.66 (95% CI, 1.30-5.43) after adjustment for age at diagnosis, sex, and medical center. Deaths per 1000 person-years in the analysis of the conventional variant of PTC were 11.80 (95% CI, 8.39-16.60) vs 2.25 (95% CI, 1.01-5.00) in BRAF V600E-positive vs mutation-negative patients; the adjusted HR was 3.53 (95% CI, 1.25-9.98). When lymph node metastasis, extrathyroidal invasion, and distant metastasis were also included in the model, the association of BRAF V600E with mortality for all PTC was no longer significant (HR, 1.21; 95% CI, 0.53-2.76). A higher BRAF V600E-associated patient mortality was also observed in several clinicopathological subcategories, but statistical significance was lost with adjustment for patient age, sex, and medical center. For example, in patients with lymph node metastasis, the deaths per 1000 person-years were 26.26 (95% CI, 19.18-35.94) vs 5.93 (95% CI, 2.96-11.86) in BRAF V600E-positive vs mutation-negative patients (unadjusted HR, 4.43 [95% CI, 2.06-9.51]; adjusted HR, 1.46 [95% CI, 0.62-3.47]). In patients with distant tumor metastasis, deaths per 1000 person-years were 87.72 (95% CI, 62.68-122.77) vs 32.28 (95% CI, 16.14-64.55) in BRAF V600E-positive vs mutation-negative patients (unadjusted HR, 2.63 [95% CI, 1.21-5.72]; adjusted HR, 0.84 [95% CI, 0.27-2.62]). CONCLUSIONS AND RELEVANCE In this retrospective multicenter study, the presence of the BRAF V600E mutation was significantly associated with increased cancer-related mortality among patients with PTC. Because overall mortality in PTC is low and the association was not independent of tumor features, how to use BRAF V600E to manage mortality risk in patients with PTC is unclear. These findings support further investigation of the prognostic and therapeutic implications of BRAF V600E status in PTC.


Cancer Research | 2009

Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1.

Julio C. Ricarte-Filho; Mabel Ryder; Dhananjay Chitale; Michael Rivera; Adriana Heguy; Marc Ladanyi; Manickam Janakiraman; David B. Solit; Jeffrey A. Knauf; R. Michael Tuttle; Ronald Ghossein; James A. Fagin

Patients with poorly differentiated thyroid cancers (PDTC), anaplastic thyroid cancers (ATC), and radioactive iodine-refractory (RAIR) differentiated thyroid cancers have a high mortality, particularly if positive on [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET). To obtain comprehensive genetic information on advanced thyroid cancers, we designed an assay panel for mass spectrometry genotyping encompassing the most significant oncogenes in this disease: 111 mutations in RET, BRAF, NRAS, HRAS, KRAS, PIK3CA, AKT1, and other related genes were surveyed in 31 cell lines, 52 primary tumors (34 PDTC and 18 ATC), and 55 RAIR, FDG-PET-positive recurrences and metastases (nodal and distant) from 42 patients. RAS mutations were more prevalent than BRAF (44 versus 12%; P = 0.002) in primary PDTC, whereas BRAF was more common than RAS (39 versus 13%; P = 0.04) in PET-positive metastatic PDTC. BRAF mutations were highly prevalent in ATC (44%) and in metastatic tumors from RAIR PTC patients (95%). Among patients with multiple metastases, 9 of 10 showed between-sample concordance for BRAF or RAS mutations. By contrast, 5 of 6 patients were discordant for mutations of PIK3CA or AKT1. AKT1_G49A was found in 9 specimens, exclusively in metastases. This is the first documentation of AKT1 mutation in thyroid cancer. Thus, RAIR, FDG-PET-positive metastases are enriched for BRAF mutations. If BRAF is mutated in the primary, it is likely that the metastases will harbor the defect. By contrast, absence of PIK3CA/AKT1 mutations in one specimen may not reflect the status at other sites because these mutations arise during progression, an important consideration for therapies directed at phosphoinositide 3-kinase effectors.


Journal of Clinical Investigation | 2005

Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer

Raffaele Ciampi; Jeffrey A. Knauf; Roswitha Kerler; Manoj Gandhi; Zhaowen Zhu; Marina N. Nikiforova; Hartmut M. Rabes; James A. Fagin; Yuri E. Nikiforov

Genes crucial for cancer development can be mutated via various mechanisms, which may reflect the nature of the mutagen. In thyroid papillary carcinomas, mutations of genes coding for effectors along the MAPK pathway are central for transformation. BRAF point mutation is most common in sporadic tumors. By contrast, radiation-induced tumors are associated with paracentric inversions activating the receptor tyrosine kinases RET and NTRK1. We report here a rearrangement of BRAF via paracentric inversion of chromosome 7q resulting in an in-frame fusion between exons 1-8 of the AKAP9 gene and exons 9-18 of BRAF. The fusion protein contains the protein kinase domain and lacks the autoinhibitory N-terminal portion of BRAF. It has elevated kinase activity and transforms NIH3T3 cells, which provides evidence, for the first time to our knowledge, of in vivo activation of an intracellular effector along the MAPK pathway by recombination. The AKAP9-BRAF fusion was preferentially found in radiation-induced papillary carcinomas developing after a short latency, whereas BRAF point mutations were absent in this group. These data indicate that in thyroid cancer, radiation activates components of the MAPK pathway primarily through chromosomal paracentric inversions, whereas in sporadic forms of the disease, effectors along the same pathway are activated predominantly by point mutations.


The New England Journal of Medicine | 2013

Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer

Alan L. Ho; Ravinder K. Grewal; Rebecca Leboeuf; Eric J. Sherman; David G. Pfister; Désirée Deandreis; Keith S. Pentlow; Pat Zanzonico; Sofia Haque; Somali Gavane; Ronald Ghossein; Julio C. Ricarte-Filho; Jose M. Dominguez; Ronglai Shen; R. Michael Tuttle; S. M. Larson; James A. Fagin

BACKGROUND Metastatic thyroid cancers that are refractory to radioiodine (iodine-131) are associated with a poor prognosis. In mouse models of thyroid cancer, selective mitogen-activated protein kinase (MAPK) pathway antagonists increase the expression of the sodium-iodide symporter and uptake of iodine. Their effects in humans are not known. METHODS We conducted a study to determine whether the MAPK kinase (MEK) 1 and MEK2 inhibitor selumetinib (AZD6244, ARRY-142886) could reverse refractoriness to radioiodine in patients with metastatic thyroid cancer. After stimulation with thyrotropin alfa, dosimetry with iodine-124 positron-emission tomography (PET) was performed before and 4 weeks after treatment with selumetinib (75 mg twice daily). If the second iodine-124 PET study indicated that a dose of iodine-131 of 2000 cGy or more could be delivered to the metastatic lesion or lesions, therapeutic radioiodine was administered while the patient was receiving selumetinib. RESULTS Of 24 patients screened for the study, 20 could be evaluated. The median age was 61 years (range, 44 to 77), and 11 patients were men. Nine patients had tumors with BRAF mutations, and 5 patients had tumors with mutations of NRAS. Selumetinib increased the uptake of iodine-124 in 12 of the 20 patients (4 of 9 patients with BRAF mutations and 5 of 5 patients with NRAS mutations). Eight of these 12 patients reached the dosimetry threshold for radioiodine therapy, including all 5 patients with NRAS mutations. Of the 8 patients treated with radioiodine, 5 had confirmed partial responses and 3 had stable disease; all patients had decreases in serum thyroglobulin levels (mean reduction, 89%). No toxic effects of grade 3 or higher attributable by the investigators to selumetinib were observed. One patient received a diagnosis of myelodysplastic syndrome more than 51 weeks after radioiodine treatment, with progression to acute leukemia. CONCLUSIONS Selumetinib produces clinically meaningful increases in iodine uptake and retention in a subgroup of patients with thyroid cancer that is refractory to radioiodine; the effectiveness may be greater in patients with RAS-mutant disease. (Funded by the American Thyroid Association and others; ClinicalTrials.gov number, NCT00970359.).


Cancer Research | 2005

Targeted Expression of BRAFV600E in Thyroid Cells of Transgenic Mice Results in Papillary Thyroid Cancers that Undergo Dedifferentiation

Jeffrey A. Knauf; Xiaolan Ma; Eric Smith; Lei Zhang; Norisato Mitsutake; Xiao Hui Liao; Samuel Refetoff; Yuri E. Nikiforov; James A. Fagin

The BRAFT1799A mutation is the most common genetic alteration in papillary thyroid carcinomas (PTC). It is also found in a subset of papillary microcarcinomas, consistent with a role in tumor initiation. PTCs with BRAFT1799A are often invasive and present at a more advanced stage. BRAFT1799A is found with high prevalence in tall-cell variant PTCs and in poorly differentiated and undifferentiated carcinomas arising from PTCs. To explore the role of BRAFV600E in thyroid cancer pathogenesis, we targeted its expression to thyroid cells of transgenic FVB/N mice with a bovine thyroglobulin promoter. Two Tg-BRAFV600E lines (Tg-BRAF2 and Tg-BRAF3) were propagated for detailed analysis. Tg-BRAF2 and Tg-BRAF3 mice had increased thyroid-stimulating hormone levels (>7- and approximately 2-fold, respectively). This likely resulted from decreased expression of thyroid peroxidase, sodium iodine symporter, and thyroglobulin. All lines seemed to successfully compensate for thyroid dysfunction, as serum thyroxine/triiodothyronine and somatic growth were normal. Thyroid glands of transgenic mice were markedly enlarged by 5 weeks of age. In Tg-BRAF2 mice, PTCs were present at 12 and 22 weeks in 14 of 15 and 13 of 14 animals, respectively, with 83% exhibiting tall-cell features, 83% areas of invasion, and 48% foci of poorly differentiated carcinoma. Tg-BRAF3 mice also developed PTCs, albeit with lower prevalence (3 of 12 and 4 of 9 at 12 and 22 weeks, respectively). Tg-BRAF2 mice had a 30% decrease in survival at 5 months. In summary, thyroid-specific expression of BRAFV600E induces goiter and invasive PTC, which transitions to poorly differentiated carcinomas. This closely recapitulates the phenotype of BRAF-positive PTCs in humans and supports a key role for this oncogene in its pathogenesis.


Cancer Cell | 2012

Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas

Piro Lito; Christine A. Pratilas; Eric W. Joseph; Madhavi Tadi; Ensar Halilovic; Matthew Zubrowski; Alan Huang; Wai Lin Wong; Margaret K. Callahan; Taha Merghoub; Jedd D. Wolchok; Elisa de Stanchina; Sarat Chandarlapaty; Poulikos I. Poulikakos; James A. Fagin; Neal Rosen

BRAF(V600E) drives tumors by dysregulating ERK signaling. In these tumors, we show that high levels of ERK-dependent negative feedback potently suppress ligand-dependent mitogenic signaling and Ras function. BRAF(V600E) activation is Ras independent and it signals as a RAF-inhibitor-sensitive monomer. RAF inhibitors potently inhibit RAF monomers and ERK signaling, causing relief of ERK-dependent feedback, reactivation of ligand-dependent signal transduction, increased Ras-GTP, and generation of RAF-inhibitor-resistant RAF dimers. This results in a rebound in ERK activity and culminates in a new steady state, wherein ERK signaling is elevated compared to its initial nadir after RAF inhibition. In this state, ERK signaling is RAF inhibitor resistant, and MEK inhibitor sensitive, and combined inhibition results in enhancement of ERK pathway inhibition and antitumor activity.

Collaboration


Dive into the James A. Fagin's collaboration.

Top Co-Authors

Avatar

Jeffrey A. Knauf

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ronald Ghossein

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Michael Tuttle

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric J. Sherman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mabel Ryder

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Julio C. Ricarte-Filho

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ian Ganly

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Iñigo Landa

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Massimo Santoro

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge