Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald Ghossein is active.

Publication


Featured researches published by Ronald Ghossein.


Thyroid | 2010

Estimating Risk of Recurrence in Differentiated Thyroid Cancer After Total Thyroidectomy and Radioactive Iodine Remnant Ablation: Using Response to Therapy Variables to Modify the Initial Risk Estimates Predicted by the New American Thyroid Association Staging System

R. Michael Tuttle; Hernán Tala; Jatin P. Shah; Rebecca Leboeuf; Ronald Ghossein; Mithat Gonen; Matvey Brokhin; Gal Omry; James A. Fagin; Ashok R. Shaha

BACKGROUND A risk-adapted approach to management of thyroid cancer requires risk estimates that change over time based on response to therapy and the course of the disease. The objective of this study was to validate the American Thyroid Association (ATA) risk of recurrence staging system and determine if an assessment of response to therapy during the first 2 years of follow-up can modify these initial risk estimates. METHODS This retrospective review identified 588 adult follicular cell-derived thyroid cancer patients followed for a median of 7 years (range 1-15 years) after total thyroidectomy and radioactive iodine remnant ablation. Patients were stratified according to ATA risk categories (low, intermediate, or high) as part of initial staging. Clinical data obtained during the first 2 years of follow-up (suppressed thyroglobulin [Tg], stimulated Tg, and imaging studies) were used to re-stage each patient based on response to initial therapy (excellent, acceptable, or incomplete). Clinical outcomes predicted by initial ATA risk categories were compared with revised risk estimates obtained after response to therapy variables were used to modify the initial ATA risk estimates. RESULTS Persistent structural disease or recurrence was identified in 3% of the low-risk, 21% of the intermediate-risk, and 68% of the high-risk patients (p < 0.001). Re-stratification during the first 2 years of follow-up reduced the likelihood of finding persistent structural disease or recurrence to 2% in low-risk, 2% in intermediate-risk, and 14% in high-risk patients, demonstrating an excellent response to therapy (stimulated Tg < 1 ng/mL without structural evidence of disease). Conversely, an incomplete response to initial therapy (suppressed Tg > 1 ng/mL, stimulated Tg > 10 ng/mL, rising Tg values, or structural disease identification within the first 2 years of follow-up) increased the likelihood of persistent structural disease or recurrence to 13% in low-risk, 41% in intermediate-risk, and 79% in high-risk patients. CONCLUSIONS Our data confirm that the newly proposed ATA recurrence staging system effectively predicts the risk of recurrence and persistent disease. Further, these initial ATA risk estimates can be significantly refined based on the assessment of response to initial therapy, thereby providing a dynamic risk assessment that can be used to more effectively tailor ongoing follow-up recommendations.


Cancer Research | 2009

Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1.

Julio C. Ricarte-Filho; Mabel Ryder; Dhananjay Chitale; Michael Rivera; Adriana Heguy; Marc Ladanyi; Manickam Janakiraman; David B. Solit; Jeffrey A. Knauf; R. Michael Tuttle; Ronald Ghossein; James A. Fagin

Patients with poorly differentiated thyroid cancers (PDTC), anaplastic thyroid cancers (ATC), and radioactive iodine-refractory (RAIR) differentiated thyroid cancers have a high mortality, particularly if positive on [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET). To obtain comprehensive genetic information on advanced thyroid cancers, we designed an assay panel for mass spectrometry genotyping encompassing the most significant oncogenes in this disease: 111 mutations in RET, BRAF, NRAS, HRAS, KRAS, PIK3CA, AKT1, and other related genes were surveyed in 31 cell lines, 52 primary tumors (34 PDTC and 18 ATC), and 55 RAIR, FDG-PET-positive recurrences and metastases (nodal and distant) from 42 patients. RAS mutations were more prevalent than BRAF (44 versus 12%; P = 0.002) in primary PDTC, whereas BRAF was more common than RAS (39 versus 13%; P = 0.04) in PET-positive metastatic PDTC. BRAF mutations were highly prevalent in ATC (44%) and in metastatic tumors from RAIR PTC patients (95%). Among patients with multiple metastases, 9 of 10 showed between-sample concordance for BRAF or RAS mutations. By contrast, 5 of 6 patients were discordant for mutations of PIK3CA or AKT1. AKT1_G49A was found in 9 specimens, exclusively in metastases. This is the first documentation of AKT1 mutation in thyroid cancer. Thus, RAIR, FDG-PET-positive metastases are enriched for BRAF mutations. If BRAF is mutated in the primary, it is likely that the metastases will harbor the defect. By contrast, absence of PIK3CA/AKT1 mutations in one specimen may not reflect the status at other sites because these mutations arise during progression, an important consideration for therapies directed at phosphoinositide 3-kinase effectors.


The New England Journal of Medicine | 2013

Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer

Alan L. Ho; Ravinder K. Grewal; Rebecca Leboeuf; Eric J. Sherman; David G. Pfister; Désirée Deandreis; Keith S. Pentlow; Pat Zanzonico; Sofia Haque; Somali Gavane; Ronald Ghossein; Julio C. Ricarte-Filho; Jose M. Dominguez; Ronglai Shen; R. Michael Tuttle; S. M. Larson; James A. Fagin

BACKGROUND Metastatic thyroid cancers that are refractory to radioiodine (iodine-131) are associated with a poor prognosis. In mouse models of thyroid cancer, selective mitogen-activated protein kinase (MAPK) pathway antagonists increase the expression of the sodium-iodide symporter and uptake of iodine. Their effects in humans are not known. METHODS We conducted a study to determine whether the MAPK kinase (MEK) 1 and MEK2 inhibitor selumetinib (AZD6244, ARRY-142886) could reverse refractoriness to radioiodine in patients with metastatic thyroid cancer. After stimulation with thyrotropin alfa, dosimetry with iodine-124 positron-emission tomography (PET) was performed before and 4 weeks after treatment with selumetinib (75 mg twice daily). If the second iodine-124 PET study indicated that a dose of iodine-131 of 2000 cGy or more could be delivered to the metastatic lesion or lesions, therapeutic radioiodine was administered while the patient was receiving selumetinib. RESULTS Of 24 patients screened for the study, 20 could be evaluated. The median age was 61 years (range, 44 to 77), and 11 patients were men. Nine patients had tumors with BRAF mutations, and 5 patients had tumors with mutations of NRAS. Selumetinib increased the uptake of iodine-124 in 12 of the 20 patients (4 of 9 patients with BRAF mutations and 5 of 5 patients with NRAS mutations). Eight of these 12 patients reached the dosimetry threshold for radioiodine therapy, including all 5 patients with NRAS mutations. Of the 8 patients treated with radioiodine, 5 had confirmed partial responses and 3 had stable disease; all patients had decreases in serum thyroglobulin levels (mean reduction, 89%). No toxic effects of grade 3 or higher attributable by the investigators to selumetinib were observed. One patient received a diagnosis of myelodysplastic syndrome more than 51 weeks after radioiodine treatment, with progression to acute leukemia. CONCLUSIONS Selumetinib produces clinically meaningful increases in iodine uptake and retention in a subgroup of patients with thyroid cancer that is refractory to radioiodine; the effectiveness may be greater in patients with RAS-mutant disease. (Funded by the American Thyroid Association and others; ClinicalTrials.gov number, NCT00970359.).


Cancer | 2006

Follicular Variant of Papillary Thyroid Carcinoma A Clinicopathologic Study of a Problematic Entity

Jeffrey Liu; Bhuvanesh Singh; Giovanni Tallini; Diane L. Carlson; Nora Katabi; Ashok R. Shaha; R. Michael Tuttle; Ronald Ghossein

There is continuous debate regarding the optimal classification, prognosis, and treatment of the follicular variant of papillary thyroid carcinoma (FVPTC). The objective of this study was to assess the behavior of FVPTC, especially its encapsulated form, and shed more light on its true position in the classification scheme of well differentiated thyroid carcinoma.


Journal of Clinical Oncology | 2002

Adrenocortical Carcinoma: Clinical, Morphologic, and Molecular Characterization

Alexander Stojadinovic; Ronald Ghossein; Axel Hoos; Aviram Nissan; David S. Marshall; Maria E. Dudas; Carlos Cordon-Cardo; David P. Jaques; Murray F. Brennan

PURPOSE To define multimolecular phenotypes of adrenocortical carcinoma (ACC) and to correlate outcome with morphologic and molecular parameters. PATIENTS AND METHODS Clinical data were analyzed for 124 patients, histopathologic slides for 67 primary tumors, and tissue specimens for 74 patients (38 primary and 36 metastatic tumors) with ACC and for 38 normal adrenal tissue samples. Molecular expression profiles were investigated by immunohistochemistry. The prognostic significance of 12 gross and histologic parameters in 67 primary ACCs was evaluated. Morphologic and protein expression patterns were correlated with disease-specific survival (DSS). Univariate influence of prognostic factors on DSS was analyzed by log-rank test and multivariate analysis by Cox regression. RESULTS The median follow-up period was 4.7 years. Significant predictors of DSS included distant metastasis at time of initial presentation; venous, capsular, and adjacent organ invasion; tumor necrosis, mitotic rate, atypical mitosis, and mdm-2 overexpression. Five-year DSS by number (one to six) of adverse histologic parameters was as follows: one to two, 84%; three to four, 37%; more than four, 9% (P =.005). The phenotype Ki-67(-)p53(-)mdm-2(+)cyclinD1(-)Bcl-2(-)p21(-)p27(+) was observed in 83% of normal and 3% of malignant adrenal tissue (P =.01). Molecular phenotypic expression was more heterogeneous in malignant than in normal (10 v five phenotypes) adrenal tissue. CONCLUSION Meticulous morphologic evaluation, mitotic count, and tumor stage are essential in determining prognosis for patients with ACC. Multimolecular phenotyping demonstrates that the molecular complexity and heterogeneity of these neoplasms are such that targeted therapy needs to be patient specific.


Modern Pathology | 2010

Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns

Michael Rivera; Julio C. Ricarte-Filho; Jeffrey A. Knauf; Ashok R. Shaha; Michael Tuttle; James A. Fagin; Ronald Ghossein

The follicular variant of papillary thyroid carcinoma usually presents as an encapsulated tumor and less commonly as a partially/non-encapsulated infiltrative neoplasm. The encapsulated form rarely metastasizes to lymph node, whereas infiltrative tumor often harbors nodal metastases. The molecular profile of the follicular variant was shown to be close to the follicular adenoma/carcinoma group of tumors with a high RAS and very low BRAF mutation rates. A comprehensive survey of oncogenic mutations in the follicular variant of papillary thyroid carcinoma according to its encapsulated and infiltrative forms has not been performed. Paraffin tissue from 28 patients with encapsulated and 19 with infiltrative follicular variant were subjected to mass spectrometry genotyping encompassing the most significant oncogenes in thyroid carcinomas: 111 mutations in RET, BRAF, NRAS, HRAS, KRAS, PIK3CA, AKT1 and other related genes. There was no difference in age, gender, tumor size and angioinvasion between encapsulated or infiltrative tumors. Infiltrative carcinomas had a much higher frequency of extrathyroid extension, positive margins and nodal metastases than encapsulated tumors (P<0.05). The BRAF 1799T>A mutation was found in 5 of 19 (26%) of the infiltrative tumor and in none of the encapsulated carcinomas (P=0.007). In contrast, RAS mutations were observed in 10 of 28 (36%) of the encapsulated group (5 NRAS_Q61R, 3 HRAS_Q61, 1 HRAS_G13C and 1 KRAS_Q61R) and in only 2 of 19 (10%) of infiltrative tumors (P=0.09). One encapsulated carcinoma showed a PAX8/PPARγ rearrangement, whereas two infiltrative tumors harbored RET/PTC fusions. Encapsulated follicular variant of papillary thyroid carcinomas have a molecular profile very close to follicular adenomas/carcinomas (high rate of RAS and absence of BRAF mutations). Infiltrative follicular variant has an opposite molecular profile closer to classical papillary thyroid carcinoma than to follicular adenoma/carcinoma (BRAF>RAS mutations). The molecular profile of encapsulated and infiltrative follicular variant parallels their biological behavior (ie, metastatic nodal and invasive patterns).


The Journal of Clinical Endocrinology and Metabolism | 2013

Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease

Iñigo Landa; Ian Ganly; Timothy A. Chan; Norisato Mitsutake; Michiko Matsuse; Tihana Ibrahimpasic; Ronald Ghossein; James A. Fagin

BACKGROUND TERT encodes the reverse transcriptase component of telomerase, which adds telomere repeats to chromosome ends, thus enabling cell replication. Telomerase activity is required for cell immortalization. Somatic TERT promoter mutations modifying key transcriptional response elements were recently reported in several cancers, such as melanomas and gliomas. OBJECTIVES The objectives of the study were: 1) to determine the prevalence of TERT promoter mutations C228T and C250T in different thyroid cancer histological types and cell lines; and 2) to establish the possible association of TERT mutations with mutations of BRAF, RAS, or RET/PTC. METHODS TERT promoter was PCR-amplified and sequenced in 42 thyroid cancer cell lines and 183 tumors: 80 papillary thyroid cancers (PTCs), 58 poorly differentiated thyroid cancers (PDTCs), 20 anaplastic thyroid cancers (ATCs), and 25 Hurthle cell cancers (HCCs). RESULTS TERT promoter mutations were found in 98 of 225 (44%) specimens. TERT promoters C228T and C250T were mutually exclusive. Mutations were present in 18 of 80 PTCs (22.5%), in 40 of 78 (51%) advanced thyroid cancers (ATC + PDTC) (P = 3 × 10(-4) vs PTC), and in widely invasive HCCs (4 of 17), but not in minimally invasive HCCs (0 of 8). TERT promoter mutations were seen more frequently in advanced cancers with BRAF/RAS mutations compared to those that were BRAF/RAS wild-type (ATC + PDTC, 67.3 vs 24.1%; P < 10(-4)), whereas BRAF-mutant PTCs were less likely to have TERT promoter mutations than BRAF wild-type tumors (11.8 vs 50.0%; P = .04). CONCLUSIONS TERT promoter mutations are highly prevalent in advanced thyroid cancers, particularly those harboring BRAF or RAS mutations, whereas PTCs with BRAF or RAS mutations are most often TERT promoter wild type. Acquisition of a TERT promoter mutation could extend survival of BRAF- or RAS-driven clones and enable accumulation of additional genetic defects leading to disease progression.


Cancer Discovery | 2013

Relief of Feedback Inhibition of HER3 Transcription by RAF and MEK Inhibitors Attenuates Their Antitumor Effects in BRAF-Mutant Thyroid Carcinomas

Cristina Montero-Conde; Sergio Ruiz-Llorente; Jose M. Dominguez; Jeffrey A. Knauf; Agnes Viale; Eric J. Sherman; Mabel Ryder; Ronald Ghossein; Neal Rosen; James A. Fagin

The RAF inhibitor vemurafenib (PLX4032) increases survival in patients with BRAF-mutant metastatic melanoma, but has limited efficacy in patients with colorectal cancers. Thyroid cancer cells are also comparatively refractory to RAF inhibitors. In contrast to melanomas, inhibition of mitogen-activated protein kinase (MAPK) signaling by PLX4032 is transient in thyroid and colorectal cancer cells. The rebound in extracellular signal-regulated kinase (ERK) in thyroid cells is accompanied by increased HER3 signaling caused by induction of ERBB3 (HER3) transcription through decreased promoter occupancy by the transcriptional repressors C-terminal binding protein 1 and 2 and by autocrine secretion of neuregulin-1 (NRG1). The HER kinase inhibitor lapatinib prevents MAPK rebound and sensitizes BRAF-mutant thyroid cancer cells to RAF or MAP-ERK kinase inhibitors. This provides a rationale for combining ERK pathway antagonists with inhibitors of feedback-reactivated HER signaling in this disease. The determinants of primary resistance to MAPK inhibitors vary between cancer types, due to preferential upregulation of specific receptor tyrosine kinases, and the abundance of their respective ligands.


Endocrine-related Cancer | 2008

Increased density of tumor associated macrophages is associated with decreased survival in advanced thyroid cancer

Mabel Ryder; Ronald Ghossein; Julio C. Ricarte-Filho; Jeffrey A. Knauf; James A. Fagin

Thyroid cancers are infiltrated with tumor-associated macrophages (TAMs), yet their role in cancer progression is not known. The objectives of this study were to characterize the density of TAMs in well-differentiated (WDTC), poorly differentiated (PDTC), and anaplastic thyroid cancers (ATC) and to correlate TAM density with clinicopathologic parameters. Immunohistochemistry was performed on tissue microarray sections from WDTC (n=33), PDTC (n=37), and ATC (n=20) using macrophage-specific markers. Electronic medical records were used to gather clinical and pathologic data. Follow-up information of PDTC patients was available for 0-12 years. In total, 9 out of 33 WDTC (27%), 20 out of 37 PDTC (54%), and 19 out of 20 ATC (95%) had an increased density of CD68(+) TAMs (> or = 10 per 0.28 mm(2); WDTC versus PDTC, P=0.03; WDTC versus ATC, P<0.0001; PDTC versus ATC, P<0.002). Increased TAMs in PDTC was associated with capsular invasion (P=0.034), extrathyroidal extension (P=0.009), and decreased cancer-related survival (P=0.009) compared with PDTC with a low density of TAMs. In conclusion, the density of TAMs is increased in advanced thyroid cancers. The presence of a high density of TAMs in PDTC correlates with invasion and decreased cancer-related survival. These results suggest that TAMs may facilitate tumor progression. As novel therapies directed against thyroid tumor cell-specific targets are being tested, the potential role of TAMs as potential modulators of the thyroid cancer behavior will need to be considered.


Journal of Clinical Investigation | 2016

Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers

Iñigo Landa; Tihana Ibrahimpasic; Laura Boucai; Rileen Sinha; Jeffrey A. Knauf; Ronak Shah; Snjezana Dogan; Julio C. Ricarte-Filho; Gnana P. Krishnamoorthy; Bin Xu; Nikolaus Schultz; Michael F. Berger; Chris Sander; Barry S. Taylor; Ronald Ghossein; Ian Ganly; James A. Fagin

BACKGROUND Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization. METHODS We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC). RESULTS Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs were BRAF-like irrespective of driver mutation. CONCLUSIONS These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared with PDTC underscore their greater virulence and higher mortality. FUNDING This work was supported in part by NIH grants CA50706, CA72597, P50-CA72012, P30-CA008748, and 5T32-CA160001; the Lefkovsky Family Foundation; the Society of Memorial Sloan Kettering; the Byrne fund; and Cycle for Survival.

Collaboration


Dive into the Ronald Ghossein's collaboration.

Top Co-Authors

Avatar

Ashok R. Shaha

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

James A. Fagin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jatin P. Shah

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ian Ganly

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R. Michael Tuttle

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhuvanesh Singh

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bin Xu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Snehal G. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Knauf

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge