Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Ippolito is active.

Publication


Featured researches published by James A. Ippolito.


Journal of Environmental Quality | 2012

Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration

Kurt A. Spokas; Keri B. Cantrell; Jeffrey M. Novak; David W. Archer; James A. Ippolito; Harold P. Collins; Akwasi A. Boateng; Isabel M. Lima; Marshall C. Lamb; Andrew McAloon; Rodrick D. Lentz; Kristine Nichols

Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits.


Soil Science | 2012

Biochars impact on soil moisture storage in an Ultisol and two Aridisols

Jeffrey M. Novak; Warren J. Busscher; Donald W. Watts; James E. Amonette; James A. Ippolito; Isabel M. Lima; Julia W. Gaskin; K. C. Das; Christoph Steiner; Mohamed Ahmedna; Djaafar Rehrah; Harry H. Schomberg

Abstract Biochar additions to soils can improve soil-water storage capability; however, there is sparse information identifying feedstocks and pyrolysis conditions that maximize this improvement. Nine biochars were pyrolyzed from five feedstocks at two temperatures, and their physical and chemical properties were characterized. Biochars were mixed at 2% wt wt−1 into a Norfolk loamy sand (Fine-loamy, kaolinitic, thermic Typic Kandiudult), a Declo silt loam (Coarse-loamy, mixed, superactive, mesic xeric Haplocalcid), or a Warden silt loam (Coarse-silty, mixed, superactive, mesic xeric Haplocambid). Untreated soils served as controls. Soils were laboratory incubated in pots for 127 days and were leached about every 30 days with deionized water. Soil bulk densities were measured before each leaching event. For 6 days thereafter, pot-holding capacities (PHC) for water were determined gravimetrically and were used as a surrogate for soil-moisture contents. Water tension curves were also measured on the biochar-treated and untreated Norfolk soil. Biochar surface area, surface tension, ash, C, and Si contents, in general, increased when produced under higher pyrolytic temperatures (≥500°C). Both switchgrass biochars caused the most significant water PHC improvements in the Norfolk, Declo, and Warden soils compared with the controls. Norfolk soil-water tension results at 5 and 60 kPa corroborated that biochar from switchgrass caused the most significant moisture storage improvements. Significant correlation occurred between the PHC for water with soil bulk densities. In general, biochar amendments enhanced the moisture storage capacity of Ultisols and Aridisols, but the effect varied with feedstock selection and pyrolysis temperature.


Journal of Colloid and Interface Science | 2009

Selenium adsorption to aluminum-based water treatment residuals

James A. Ippolito; Kirk G. Scheckel; K. A. Barbarick

Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.


Journal of Environmental Quality | 2012

Switchgrass Biochar Affects Two Aridisols

James A. Ippolito; Jeffrey M. Novak; Warren J. Busscher; Mohamed Ahmedna; Djaafar Rehrah; Donald W. Watts

The use of biochar has received growing attention because of its ability to improve the physicochemical properties of highly weathered Ultisols and Oxisols, yet very little research has focused on its effects in Aridisols. We investigated the effect of low or high temperature (250 or 500°C) pyrolyzed switchgrass () biochar on two Aridisols. In a pot study, biochar was added at 2% w/w to a Declo loam (Xeric Haplocalcids) or to a Warden very fine sandy loam (Xeric Haplocambids) and incubated at 15% moisture content (by weight) for 127 d; a control (no biochar) was also included. Soils were leached with 1.2 to 1.3 pore volumes of deionized HO on Days 34, 62, 92, and 127, and cumulative leachate Ca, K, Mg, Na, P, Cu, Fe, Mn, Ni, Zn, NO-N, NO-N, and NH-N concentrations were quantified. On termination of the incubation, soils were destructively sampled for extractable Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Zn, NO-N, and NH-N, total C, inorganic C, organic C, and pH. Compared with 250°C, the 500°C pyrolysis temperature resulted in greater biochar surface area, elevated pH, higher ash content, and minimal total surface charge. For both soils, leachate Ca and Mg decreased with the 250°C switchgrass biochar, likely due to binding by biochars functional group sites. Both biochars caused an increase in leachate K, whereas the 500°C biochar increased leachate P. Both biochars reduced leachate NO-N concentrations compared with the control; however, the 250°C biochar reduced NO-N concentrations to the greatest extent. Easily degradable C, associated with the 250°C biochars structural make-up, likely stimulated microbial growth, which caused NO-N immobilization. Soil-extractable K, P, and NO-N followed a pattern similar to the leachate observations. Total soil C content increases were linked to an increase in organic C from the biochars. Cumulative results suggest that the use of switchgrass biochar prepared at 250°C could improve environmental quality in calcareous soil systems by reducing nutrient leaching potential.


Journal of Environmental Quality | 2012

Macroscopic and molecular investigations of copper sorption by a steam-activated biochar.

James A. Ippolito; Daniel G. Strawn; Kirk G. Scheckel; Jeffrey M. Novak; Mohamed Ahmedna; M. A. S. Niandou

Excessive Cu concentrations in water systems can negatively affect biological systems. Because Cu can form strong associations with organic functional groups, we examined the ability of biochar (an O-C-enriched organic bioenergy by-product) to sorb Cu from solution. In a batch experiment, KOH steam-activated pecan shell biochar was shaken for 24 h in pH 6, 7, 8, or 9 buffered solutions containing various Cu concentrations to identify the effect of pH on biochar Cu sorption. Afterward, all biochar solids from the 24-h shaking period were air-dried and analyzed using X-ray absorption fine structure (XAFS) spectroscopy to determine solid-phase Cu speciation. In a separate batch experiment, biochar was shaken for 30 d in pH 6 buffered solution containing increasing Cu concentrations; the Cu sorption maximum was calculated based on the exponential rise to a maximum equation. Biochar sorbed increasing amounts of Cu as the solution pH decreased from 9 to 6. The XAFS spectroscopy revealed that Cu was predominantly sorbed onto a biochar organic phase at pH 6 in a molecular structure similar to Cu adsorbed on model humic acid (Cu-humic acid [HA]). The XAFS spectra at pH 7, 8, and 9 suggested that Cu was associated with the biochar as three phases: (i) a complex adsorbed on organic ligands similar to Cu-HA, (ii) carbonate phases similar to azurite (Cu(CO)(OH)), and (iii) a Cu oxide phase like tenorite (CuO). The exponential rise equation fit to the incubated samples predicted a Cu sorption maximum of 42,300 mg Cu kg. The results showed that KOH steam-activated pecan shell biochar could be used as a material for sorbing excess Cu from water systems, potentially reducing the negative effects of Cu in the environment.


Archive | 2015

Biochar elemental composition and factors influencing nutrient retention

James A. Ippolito; Kurt A. Spokas; Jeffrey M. Novak; Rodrick D. Lentz; Keri B. Cantrell

Biochar is the carbonaceous solid byproduct of the thermochemical conversion of a carbon-bearing organic material, commonly high in cellulose, hemicelluloses, or lignin content, for the purposes of carbon sequestration and storage. More specifically, the thermal conversion process known as pyrolysis occurs when carbon-containing substances are introduced to elevated temperatures in the absence of oxygen at varying residence times, yielding biochar. Several pyrolysis techniques employed to produce biochar differ in the temperature of reaction and residence time in the reactor. Different reactor residence times are described as slow (hours to days), fast (seconds to minutes), and flash (seconds). Fast or flash pyrolysis typically occurs around 500oC with residence times less than 500 milliseconds to 1 second and produces relatively greater gas yields with a concomitant decrease in biochar yield (~ 12%). Slow pyrolysis temperatures have ranged from 350 to 750oC but with residence times ranging from minutes to days. Slow pyrolysis yields a greater quantity of biochar (between 25 to 35%). Pyrolysis temperature and type may be varied to maximize the desired biochar end-product. In general, increasing pyrolysis temperature tends to increase biochar total carbon, potassium, and magnesium content, pH, and surface area, and decrease cation exchange capacity. Slow pyrolysis, in general, tends to produce biochars with greater nitrogen, sulfur, available phosphorus, calcium, magnesium, surface area, and cation exchange capacity as compared to fast pyrolysis. In addition to altering temperature and time, the importance of feedstock source needs to be recognized when utilizing biochar in situations such as a soil conditioner. Over the last 10 years biochar research and use has expanded exponentially and so have the feedstocks utilized. Biochars have now been created from corn, wheat, barley and rice straw, switchgrass, peanut, pecan, and hazelnut shells, sugarcane bagasse, coconut coir, food waste, hardwood and softwood species, poultry and turkey litter, swine, dairy, and cattle manure, and biosolids to name a few. Feedstock source influences end-product characteristics, and in general most plant-based biochars containing elevated carbon content and lesser quantities of necessary plant nutrients as compared to manure-based biochars. It has been demonstrated that the mineral content of the feedstock has a significant effect on product distribution, with higher amounts of chloride salts reducing the amount of the solid biochar product. In addition, chloride and other inorganic salts also impact the chemical composition of the liquid, gas, and char pyrolysis products, potentially producing products with higher economic values. Existing studies indicate that even the trace amounts of minerals present in the various biomass sources and feedstock mixtures do have an impact on the chemical compositions of the products. Furthermore, both temperature and residence time, along with feedstock source or mixtures of sources, affect end-product characteristics.


Soil Science | 2011

Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

James A. Ippolito; David D. Tarkalson; Gary A. Lehrsch

Adoption of new management techniques that improve soil water storage and soil N plant availability yet limit N leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kg N ha−1) applied with band or fully mixed zeolite (clinoptilolite) application rates (up to 90 Mg ha−1) on NH4-N and NO3-N concentrations in a Portneuf silt loam (coarse-silty, mixed, mesic, durinodic Xeric Haplocalcid). Two additional greenhouse experiments were carried out to test the soil moisture status and corn (Zea mays L.) growth in a Wolverine sand (mixed, frigid Xeric Torripsamment). Mixing urea fertilizer into silt loam soil resulted in greater urea mineralization as compared with band application of fertilizer + zeolite, and the mixed zeolite was more effective at sorbing and protecting NH4-N against nitrification. Increasing the rate of mixed zeolite into sandy soil increased the soil moisture content, and mixed zeolite soils contained 1.3% more soil moisture as compared with band zeolite applications. After 6 weeks of corn growth in amended sandy soil, zeolite application at 22 Mg ha−1 seemed to increase corn weight compared with controls. However, increasing zeolite rate up to 90 Mg ha−1 caused a decrease in corn weight, likely caused by the elevated zeolite Na content (3%). Fully mixing zeolite into soil reduced the rate of nitrification likely because of NH4+ adsorption in the zeolite mineral lattice. Thus, mixing zeolite into soil may reduce the leaching of inorganic N. Mixing may also improve the soil water status, although initial leaching of zeolite-borne Na may be necessary before growing crops.


Journal of Environmental Quality | 2014

Hardwood biochar influences calcareous soil physicochemical and microbiological status

James A. Ippolito; Mary E. Stromberger; Rodrick D. Lentz; Robert S. Dungan

The effects of biochar application to calcareous soils are not well documented. In a laboratory incubation study, a hardwood-based, fast pyrolysis biochar was applied (0, 1, 2, and 10% by weight) to a calcareous soil. Changes in soil chemistry, water content, microbial respiration, and microbial community structure were monitored over a 12-mo period. Increasing the biochar application rate increased the water-holding capacity of the soil-biochar blend, a trait that could be beneficial under water-limited situations. Biochar application also caused an increase in plant-available Fe and Mn, soil C content, soil respiration rates, and bacterial populations and a decrease in soil NO-N concentration. Biochar rates of 2 and 10% altered the relative proportions of bacterial and fungal fatty acids and shifted the microbial community toward greater relative amounts of bacteria and fewer fungi. The ratio of fatty acid 19:0 cy to its precursor, 18:1ω7c, was higher in the 10% biochar rate soil than in all other soils, potentially indicating an environmental stress response. The 10% application rate of this particular biochar was extreme, causing the greatest change in microbial community structure, a physiological response to stress in Gram-negative bacteria, and a drastic reduction in soil NO-N (85-97% reduction compared with the control), all of which were sustained over time.


Communications in Soil Science and Plant Analysis | 2006

Kinetics of Copper Desorption from Highly Calcareous Soils

Reza Ghasemi-Fasaei; M. Maftoun; A. Ronaghi; N. Karimian; J. Yasrebi; M. T. Assad; James A. Ippolito

Abstract Desorption of copper (Cu) is an important factor in determining Cu availability in calcareous soils. Kinetics of native and added Cu desorption by DTPA (diethylene‐triaminepentaacetic‐acid) from 15 highly calcareous soils of southern Iran were studied in a laboratory experiment. Our results showed that two constant‐rate, Elovich, simple Elovich, and parabolic‐diffusion equations were the best‐fitted equations among eight kinetic models used. The copper desorption pattern based on the parabolic‐diffusion equation revealed that the rate of native Cu desorption was higher in the first 2 h followed by a slower release rate, which suggests that two different mechanisms are involved. The trend may describe why the DTPA soil test has been considerably successful in predicting Cu availability in calcareous soils. Stepwise multiple regression equations indicated that CCE (calcium carbonate equivalent), CEC (cation exchange capacity), and clay content are the most important soil characteristics that predict the rate constants of the kinetic models. Mean extractant recovery percentage (ERP) of the soils was only 20%, which indicated that after 20 days, DTPA extracted only one‐fifth of added Cu. Regression equations indicated that as soil OM (organic matter) content increased, the value of ERP decreased. From results reported herein it seems that CCE, CEC, and clay are the most important factors controlling Cu release from highly calcareous soils of southern Iran. However, the initial soil Cu desorption rate is probably controlled by CEC.


Chemosphere | 2016

Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol

Khalid A. Elzobair; Mary E. Stromberger; James A. Ippolito; Rodrick D. Lentz

Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar.

Collaboration


Dive into the James A. Ippolito's collaboration.

Top Co-Authors

Avatar

K. A. Barbarick

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Novak

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Kurt A. Spokas

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Rodrick D. Lentz

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Tarkalson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Michael S. Massey

California State University

View shared research outputs
Top Co-Authors

Avatar

D. G. Westfall

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Dennis L. McCallister

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge