Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Loehr is active.

Publication


Featured researches published by James A. Loehr.


Medicine and Science in Sports and Exercise | 2003

Training with the International Space Station interim resistive exercise device

Suzanne M. Schneider; William E. Amonette; Kristi Blazine; Jason R. Bentley; Stuart M. C. Lee; James A. Loehr; Alan D. Moore; Michael Rapley; Edwin Mulder; Scott M. Smith

UNLABELLED A unique, interim elastomer-based resistive exercise device (iRED) is being used on the International Space Station. PURPOSE This study characterized iRED training responses in a 1-g environment by: 1) determining whether 16 wk of high-intensity training with iRED produces increases in muscle strength and volume and bone mineral density (BMD), 2) comparing training responses with iRED to free weights, and 3) comparing iRED training responses at two training volumes. METHODS Twenty-eight untrained men were assigned to four groups of seven subjects each: a no exercise control group (CON), an iRED group who trained with three sets/exercise (iRED3), a free-weight group (FW) who trained with three sets/exercise, and an iRED group who trained with six sets/exercise (iRED6). Training exercises included squat (SQ), heel raise (HR), and dead lift (DL) exercises, 3 d.wk(-1) for 16 wk. RESULTS For CON, no changes occurred pre- to posttraining. For iRED3, increases (P< or =0.05) in one-repetition maximum (1-RM) strength (SQ 21 +/- 4%, HR 17 +/- 4%, DL 29 +/- 5%), leg lean mass (3.1 +/- 0.5%) by dual energy x-ray absorptiometry (DXA), and thigh (4.5 +/- 0.9%) and calf (5.9 +/- 0.7%) muscle volume (by magnetic resonance imaging) occurred after training with no changes in BMD (DXA). For FW, increases in 1-RM strength (SQ 22 +/- 5%, HR 24 +/- 3%, DL 41 +/- 7%), whole body (3.0 +/- 1.1%) and leg lean mass (5.4 +/- 1.2%), thigh (9.2 +/- 1.3%) and calf (4.2 +/- 1.0%) muscle volumes, and lumbar BMD (4.2 +/- 0.7%) occurred after training. For iRED6, all responses were similar to iRED3. CONCLUSION High-intensity training with the iRED produced muscle responses similar to FW but was not effective in stimulating bone. Bed rest and spaceflight studies are needed to evaluate the effectiveness of the iRED to prevent microgravity deconditioning.


Medicine and Science in Sports and Exercise | 2011

Musculoskeletal adaptations to training with the advanced resistive exercise device.

James A. Loehr; Stuart M. C. Lee; Kirk L. English; Jean Sibonga; Scott M. Smith; Barry A. Spiering; R. Donald Hagan

UNLABELLED Resistance exercise has been used as a means to prevent the musculoskeletal losses associated with spaceflight. Therefore, the National Aeronautics and Space Administration designed the Advanced Resistive Exercise Device (ARED) to replace the initial device flown on the International Space Station. The ARED uses vacuum cylinders and inertial flywheels to simulate, in the absence of gravity, the constant mass and inertia, respectively, of free weight (FW) exercise. PURPOSE To compare the musculoskeletal effects of resistance exercise training using the ARED with the effects of training with FW. METHODS Previously untrained, ambulatory subjects exercised using one of two modalities: FW (6 men and 3 women) or ARED (8 men and 3 women). Subjects performed squat, heel raise, and dead lift exercises 3 d·wk(-1) for 16 wk. Squat, heel raise, and dead lift strength (one-repetition maximum; using FW and ARED), bone mineral density (via dual-energy x-ray absorptiometry), and vertical jump were assessed before, during, and after training. Muscle mass (via magnetic resonance imaging) and bone morphology (via quantitative computed tomography) were measured before and after training. Bone biomarkers and circulating hormones were measured before training and after 4, 8, and 16 wk. RESULTS Muscle strength, muscle volume, vertical jump height, and lumbar spine bone mineral density (via dual-energy x-ray absorptiometry and quantitative computed tomography) significantly increased (P ≤ 0.05) in both groups. There were no significant differences between groups in any of the dependent variables at any time. CONCLUSIONS After 16 wk of training, ARED exercise resulted in musculoskeletal effects that were not significantly different from the effects of training with FW. Because FW training mitigates bed rest-induced deconditioning, the ARED may be an effective countermeasure for spaceflight-induced deconditioning and should be validated during spaceflight.


NeuroRehabilitation | 2011

Sensorimotor reconditioning during and after spaceflight

Scott J. Wood; James A. Loehr; Mark E. Guilliams

Exposure to microgravity drives adaptive changes in healthy individuals reconditioned for abnormal gravity states. These changes are maladaptive for return to earths gravity. The intersubject variability of sensorimotor decrements is striking, although poorly understood. Multisensory integration, which is important for resolving sensory ambiguity on earth, is a critical mechanism for sensorimotor adaptation during and following space flight. The removal of gravitational loading also has profound effects that both negatively impact sensorimotor function and reduce capacity to overcome sensorimotor deficits. Countermeasure strategies include preflight training to facilitate transition to microgravity, pharmaceuticals and restriction of some activities early on orbit, and inflight exercise to minimize deconditioning during longer duration missions. Active motion is important to promote reconditioning upon return to earths gravity. A supervised reconditioning program utilizes exercises that challenge multisensory integration with an increasing level of difficulty customized to the individuals state of recovery. This program also serves to increase crew self-awareness of fall risk. New resistive and aerobic exercise capabilities onboard the International Space Station contribute to improved postflight mobility. Lessons learned from inflight and postflight reconditioning programs have implications for future exploration crews that will operate more autonomously, as well as rehabilitation in clinical populations on earth.


Aerospace medicine and human performance | 2015

Physical Training for Long-Duration Spaceflight.

James A. Loehr; Mark E. Guilliams; Nora Petersen; Natalie Hirsch; Shino Kawashima; Hiroshi Ohshima

INTRODUCTION Physical training has been conducted on the International Space Station (ISS) for the past 10 yr as a countermeasure to physiological deconditioning during spaceflight. Each member space agency has developed its own approach to creating and implementing physical training protocols for their astronauts. We have divided physical training into three distinct phases (preflight, in-flight, and postflight) and provided a description of each phase with its constraints and limitations. We also discuss how each member agency (NASA, ESA, CSA, and JAXA) prescribed physical training for their crewmembers during the first 10 yr of ISS operations. It is important to understand the operational environment, the agency responsible for the physical training program, and the constraints and limitations associated with spaceflight to accurately design and implement exercise training or interpret the exercise data collected on ISS. As exploration missions move forward, resolving agency differences in physical training programs will become important to maximizing the effectiveness of exercise as a countermeasure and minimizing any mission impacts.


Aerospace medicine and human performance | 2015

Isokinetic Strength Changes Following Long-Duration Spaceflight on the ISS.

Kirk L. English; Stuart M. C. Lee; James A. Loehr; Robert Ploutz-Snyder; Lori L. Ploutz-Snyder

INTRODUCTION Long-duration spaceflight results in a loss of muscle strength that poses both operational and medical risks, particularly during emergency egress, upon return to Earth, and during future extraterrestrial exploration. Isokinetic testing of the knee, ankle, and trunk quantifies movement-specific strength changes following spaceflight and offers insight into the effectiveness of in-flight exercise countermeasures. METHODS We retrospectively evaluated changes in isokinetic strength for 37 ISS crewmembers (Expeditions 1-25) following 163 ± 38 d (mean ± SD) of spaceflight. Gender, in-flight resistance exercise hardware, and preflight strength were examined as potential modifiers of spaceflight-induced strength changes. RESULTS Mean isokinetic strength declined 8-17% following spaceflight. One month after return to Earth, strength had improved, but small deficits of 1-9% persisted. Spaceflight-induced strength losses were not different between men and women. Mean strength losses were as much as 7% less in crewmembers who flew after the Advanced Resistive Exercise Device (ARED) replaced the interim Resistive Exercise Device (iRED) as the primary in-flight resistance exercise hardware, although these differences were not statistically significant. Absolute and relative preflight strength were moderately correlated (r = -0.47 and -0.54, respectively) with postflight strength changes. DISCUSSION In-flight resistance exercise did not prevent decreased isokinetic strength after long-duration spaceflight. However, continued utilization of ARED, a more robust resistance exercise device providing higher loads than iRED, may result in greater benefits as exercise prescriptions are optimized. With reconditioning upon return to Earth, strength is largely recovered within 30 d.


Medicine and Science in Sports and Exercise | 2009

Reliability of Maximal Strength Testing in Novice Weightlifters

James A. Loehr; Stuart M. C. Lee; Alan H. Feiveson; Lori L. Ploutz-Snyder

The one repetition maximum (1RM) is a criterion measure of muscle strength. However, the reliability of 1RM testing in novice subjects has received little attention. Understanding this information is crucial to accurately interpret changes in muscle strength. To evaluate the test-retest reliability of a squat (SQ), heel raise (HR), and deadlift (DL) 1RM in novice subjects. Twenty healthy males (31 plus or minus 5 y, 179.1 plus or minus 6.1 cm, 81.4 plus or minus 10.6 kg) with no weight training experience in the previous six months participated in four 1RM testing sessions, with each session separated by 5-7 days. SQ and HR 1RM were conducted using a smith machine; DL 1RM was assessed using free weights. Session 1 was considered a familiarization and was not included in the statistical analyses. Repeated measures analysis of variance with Tukey fs post-hoc tests were used to detect between-session differences in 1RM (p.0.05). Test-retest reliability was evaluated by intraclass correlation coefficients (ICC). During Session 2, the SQ and DL 1RM (SQ: 90.2 }4.3, DL: 75.9 }3.3 kg) were less than Session 3 (SQ: 95.3 }4.1, DL: 81.5 plus or minus 3.5 kg) and Session 4 (SQ: 96.6 }4.0, DL: 82.4 }3.9 kg), but there were no differences between Session 3 and Session 4. HR 1RM measured during Session 2 (150.1 }3.7 kg) and Session 3 (152.5 }3.9 kg) were not different from one another, but both were less than Session 4 (157.5 }3.8 kg). The reliability (ICC) of 1RM measures for Sessions 2-4 were 0.88, 0.83, and 0.87, for SQ, HR, and DL, respectively. When considering only Sessions 3 and 4, the reliability was 0.93, 0.91, and 0.86 for SQ, HR, and DL, respectively. One familiarization session and 2 test sessions (for SQ and DL) were required to obtain excellent reliability (ICC greater than or equal to 0.90) in 1RM values with novice subjects. We were unable to attain this level of reliability following 3 HR testing sessions therefore additional sessions may be required to obtain an ICC of greater than or equal to 0.90. Future resistive exercise studies should consider the reliability of specific measures to ensure that changes in strength with training are attributable to training and not learning effects associated with 1RM testing.


Medicine and Science in Sports and Exercise | 2006

Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

Cassie Smith; Stuart M. C. Lee; Mitzi S. Laughlin; James A. Loehr; Jason Norcross; John K. DeWitt; Ronald Hagan

: Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription.


Aviation, Space, and Environmental Medicine | 2004

Foot-ground reaction force during resistive exercise in parabolic flight

Stuart M. C. Lee; Kendall Cobb; James A. Loehr; Daniel Nguyen; Suzanne M. Schneider


European Journal of Applied Physiology | 2014

Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training

Kirk L. English; James A. Loehr; Stuart M. C. Lee; Scott M. Smith


Archive | 2009

Isokinetic Strength and Endurance Tests used Pre- and Post-Spaceflight: Test-Retest Reliability

Mitzi S. Laughlin; Stuart M. C. Lee; James A. Loehr; William E. Amonette

Collaboration


Dive into the James A. Loehr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk L. English

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott M. Smith

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

John K. DeWitt

University of Houston–Clear Lake

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Sibonga

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Lori L. Ploutz-Snyder

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Scott A. Smith

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge