Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. Poulter is active.

Publication


Featured researches published by James A. Poulter.


Nature Genetics | 2012

Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration

Robert K. Koenekoop; Hui Wang; Jacek Majewski; Xia Wang; Irma Lopez; Huanan Ren; Yiyun Chen; Yumei Li; Gerald A. Fishman; Mohammed Genead; Jeremy Schwartzentruber; Naimesh Solanki; Elias I. Traboulsi; Jingliang Cheng; Clare V. Logan; Martin McKibbin; Bruce E. Hayward; David A. Parry; Colin A. Johnson; Mohammed Nageeb; James A. Poulter; Moin D. Mohamed; Hussain Jafri; Yasmin Rashid; Graham R. Taylor; Vafa Keser; Graeme Mardon; Huidan Xu; Chris F. Inglehearn; Qing Fu

Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wlds) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.


American Journal of Human Genetics | 2010

Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy.

James A. Poulter; Manir Ali; David F. Gilmour; Aine Rice; Hiroyuki Kondo; Kenshi Hayashi; David A. Mackey; Lisa S. Kearns; Jonathan B Ruddle; Jamie E. Craig; Eric A. Pierce; Louise Downey; Moin D. Mohamed; Alexander F. Markham; Chris F. Inglehearn; Carmel Toomes

Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder of the retinal vascular system. Although mutations in three genes (LRP5, FZD4, and NDP) are known to cause FEVR, these account for only a fraction of FEVR cases. The proteins encoded by these FEVR genes form part of a signaling complex that activates the Norrin-beta-catenin signaling pathway. Recently, through a large-scale reverse genetic screen in mice, Junge and colleagues identified an additional member of this signaling complex, Tspan12. Here, we report that mutations in TSPAN12 also cause autosomal-dominant FEVR. We describe seven mutations identified in a cohort of 70 FEVR patients in whom we had already excluded the known FEVR genes. This study provides further evidence for the importance of the Norrin-beta-catenin signaling pathway in the development of the retinal vasculature and also indicates that more FEVR genes remain to be identified.


American Journal of Human Genetics | 2012

Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta

David A. Parry; Steven J. Brookes; Clare V. Logan; James A. Poulter; Walid El-Sayed; Suhaila Al-Bahlani; Sharifa Al Harasi; Jihad Sayed; El Mostafa Raïf; R.C. Shore; Mayssoon Dashash; Martin J. Barron; J.E. Morgan; Ian M. Carr; Graham R. Taylor; Colin A. Johnson; Michael J. Aldred; Michael J. Dixon; J. Tim Wright; Jennifer Kirkham; Chris F. Inglehearn; Alan J. Mighell

Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the proteins phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis.


Nephron Physiology | 2012

Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations.

Graciana Jaureguiberry; Muriel de La Dure-Molla; David A. Parry; Mickael Quentric; Nina Himmerkus; Toshiyasu Koike; James A. Poulter; Enriko Klootwijk; Steven L. Robinette; Alexander J. Howie; Vaksha Patel; Marie Lucile Figueres; Horia Stanescu; Naomi Issler; Jeremy K. Nicholson; Detlef Bockenhauer; Christopher Laing; Stephen B. Walsh; David A. McCredie; Sue Povey; Audrey Asselin; Arnaud Picard; Aurore Coulomb; Alan Medlar; Isabelle Bailleul-Forestier; Alain Verloes; Cedric Le Caignec; Gwenaelle Roussey; Julien Guiol; Bertrand Isidor

Background/Aims: Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods: We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results: All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions: This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.


Human Molecular Genetics | 2014

Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta

James A. Poulter; Gina Murillo; Steven J. Brookes; Claire E. L. Smith; David A. Parry; Sandra Silva; Jennifer Kirkham; Chris F. Inglehearn; Alan J. Mighell

Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature

Rob W.J. Collin; Konstantinos Nikopoulos; Margo Dona; Christian Gilissen; Alexander Hoischen; F. Nienke Boonstra; James A. Poulter; Hiroyuki Kondo; Wolfgang Berger; Carmel Toomes; Tomoko Tahira; Lucas R. Mohn; Ellen A.W. Blokland; Lisette Hetterschijt; Manir Ali; Johanne M. Groothuismink; Lonneke Duijkers; Chris F. Inglehearn; Lea Sollfrank; Tim M. Strom; Eiichi Uchio; C. Erik van Nouhuys; Hannie Kremer; Joris A. Veltman; Erwin van Wijk; Frans P.M. Cremers

Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous disorder characterized by abnormal vascularization of the peripheral retina, which can result in retinal detachment and severe visual impairment. In a large Dutch FEVR family, we performed linkage analysis, exome sequencing, and segregation analysis of DNA variants. We identified putative disease-causing DNA variants in proline-alanine-rich ste20-related kinase (c.791dup; p.Ser265ValfsX64) and zinc finger protein 408 (ZNF408) (c.1363C>T; p.His455Tyr), the latter of which was also present in an additional Dutch FEVR family that subsequently appeared to share a common ancestor with the original family. Sequence analysis of ZNF408 in 132 additional individuals with FEVR revealed another potentially pathogenic missense variant, p.Ser126Asn, in a Japanese family. Immunolocalization studies in COS-1 cells transfected with constructs encoding the WT and mutant ZNF408 proteins, revealed that the WT and the p.Ser126Asn mutant protein show complete nuclear localization, whereas the p.His455Tyr mutant protein was localized almost exclusively in the cytoplasm. Moreover, in a cotransfection assay, the p.His455Tyr mutant protein retains the WT ZNF408 protein in the cytoplasm, suggesting that this mutation acts in a dominant-negative fashion. Finally, morpholino-induced knockdown of znf408 in zebrafish revealed defects in developing retinal and trunk vasculature, that could be rescued by coinjection of RNA encoding human WT ZNF408 but not p.His455Tyr mutant ZNF408. Together, our data strongly suggest that mutant ZNF408 results in abnormal retinal vasculogenesis in humans and is associated with FEVR.


European Journal of Human Genetics | 2014

Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta

James A. Poulter; Walid El-Sayed; R.C. Shore; Jennifer Kirkham; Chris F. Inglehearn; Alan J. Mighell

The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.


American Journal of Human Genetics | 2011

Homozygous Mutations in PXDN Cause Congenital Cataract, Corneal Opacity, and Developmental Glaucoma

Kamron Khan; Adam K Rudkin; David A. Parry; Kathryn P. Burdon; Martin McKibbin; Clare V. Logan; Zakia Abdelhamed; James Muecke; Narcis Fernandez-Fuentes; Kate J. Laurie; Mike Shires; Rhys Fogarty; Ian M. Carr; James A. Poulter; J.E. Morgan; Moin D. Mohamed; Hussain Jafri; Yasmin Raashid; Ngy Meng; Horm Piseth; Carmel Toomes; Robert J. Casson; Graham R. Taylor; Michael Hammerton; Eamonn Sheridan; Colin A. Johnson; Chris F. Inglehearn; Jamie E. Craig; Manir Ali

Anterior segment dysgenesis describes a group of heterogeneous developmental disorders that affect the anterior chamber of the eye and are associated with an increased risk of glaucoma. Here, we report homozygous mutations in peroxidasin (PXDN) in two consanguineous Pakistani families with congenital cataract-microcornea with mild to moderate corneal opacity and in a consanguineous Cambodian family with developmental glaucoma and severe corneal opacification. These results highlight the diverse ocular phenotypes caused by PXDN mutations, which are likely due to differences in genetic background and environmental factors. Peroxidasin is an extracellular matrix-associated protein with peroxidase catalytic activity, and we confirmed localization of the protein to the cornea and lens epithelial layers. Our findings imply that peroxidasin is essential for normal development of the anterior chamber of the eye, where it may have a structural role in supporting cornea and lens architecture as well as an enzymatic role as an antioxidant enzyme in protecting the lens, trabecular meshwork, and cornea against oxidative damage.


Investigative Ophthalmology & Visual Science | 2012

Recessive mutations in TSPAN12 cause retinal dysplasia and severe familial exudative vitreoretinopathy (FEVR).

James A. Poulter; Alice E. Davidson; Manir Ali; David F. Gilmour; David A. Parry; Helen A. Mintz-Hittner; Ian M. Carr; Helen M. Bottomley; Vernon Long; Louise Downey; Panagiotis I. Sergouniotis; Genevieve A. Wright; Robert E. MacLaren; Anthony T. Moore; Andrew R. Webster; Chris F. Inglehearn; Carmel Toomes

PURPOSE Familial exudative vitreoretinopathy (FEVR) is an inherited disorder that disrupts the development of the retinal vasculature and can result in blindness. FEVR is genetically heterogeneous and mutations in four genes, NDP, FZD4, LRP5, and TSPAN12, encoding components of a novel ligand-receptor complex that activates the Norrin-β-catenin signaling pathway, account for approximately 50% of cases. We recently identified mutations in TSPAN12 as a cause of dominant FEVR. The purpose of this study was to identify recessive TSPAN12 mutations in FEVR patients. METHODS Mutation screening was performed by directly sequencing PCR products generated from genomic DNA with primers designed to amplify the coding sequence of TSPAN12. Splicing defects were verified by reverse transcriptase PCR of leukocyte cDNA. RESULTS TSPAN12 screening in a large dominant FEVR family unexpectedly led to the identification of homozygous mutations in severely affected family members, whereas mildly affected family members were heterozygous. Further screening in a cohort of 10 retinal dysplasia/severe FEVR patients identified an additional three cases with recessive TSPAN12 mutations. In all examined cases, single mutation carriers were mildly affected compared to patients harboring two TSPAN12 mutations. CONCLUSIONS We report for the first time recessive mutations in TSPAN12 and describe the first genetic cause for the clinical variation seen in FEVR families. Our data raise the possibility that patients with severe FEVR actually may harbor two mutant alleles, derived either from the same gene or potentially from other genes encoding components of the Norrin-β-catenin signaling pathway.


American Journal of Human Genetics | 2015

Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6

Ilham Ratbi; Kim D. Falkenberg; Manou Sommen; Nada Al-Sheqaih; Soukaina Guaoua; Geert Vandeweyer; Jill Urquhart; Kate Chandler; Simon G Williams; Neil A. Roberts; Mustapha El Alloussi; Graeme C.M. Black; Sacha Ferdinandusse; Hind Ramdi; Audrey Heimler; Alan Fryer; Sally-Ann Lynch; Nicola Cooper; Kai Ren Ong; Claire E. L. Smith; Chris F. Inglehearn; Alan J. Mighell; Claire Elcock; James A. Poulter; Marc Tischkowitz; Sally Davies; Aleksandr Mironov; William G. Newman; Hans R. Waterham; Guy Van Camp

Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.

Collaboration


Dive into the James A. Poulter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin McKibbin

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar

Claire E. L. Smith

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamron Khan

Moorfields Eye Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge