Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James B. Potash is active.

Publication


Featured researches published by James B. Potash.


Molecular Psychiatry | 2009

Family-based association of FKBP5 in bipolar disorder.

Virginia L. Willour; H. Chen; J. Toolan; Pamela L. Belmonte; D. J. Cutler; Fernando S. Goes; P. P. Zandi; Richard S. Lee; D. F. MacKinnon; F. M. Mondimore; Barbara Schweizer; J. R. DePaulo; Elliot S. Gershon; F. J. McMahon; J. B. Potash; Francis J. McMahon; Jo Steele; Justin Pearl; Layla Kassem; Victor Lopez; James B. Potash; Dean F. MacKinnon; Erin B. Miller; Jennifer Toolan; Peter P. Zandi; Thomas G. Schulze; Evaristus A. Nwulia; Sylvia G. Simpson; John I. Nurnberger; Marvin Miller

The FKBP5 gene product forms part of a complex with the glucocorticoid receptor and can modulate cortisol-binding affinity. Variations in the gene have been associated with increased recurrence of depression and with rapid response to antidepressant treatment. We sought to determine whether common FKBP5 variants confer risk for bipolar disorder. We genotyped seven tag single-nucleotide polymorphisms (SNPs) in FKBP5, plus two SNPs previously associated with illness, in 317 families with 554 bipolar offspring, derived primarily from two studies. Single marker and haplotypic analyses were carried out with FBAT and EATDT employing the standard bipolar phenotype. Association analyses were also conducted using 11 disease-related variables as covariates. Under an additive genetic model, rs4713902 showed significant overtransmission of the major allele (P=0.0001), which was consistent across the two sample sets (P=0.004 and 0.006). rs7757037 showed evidence of association that was strongest under the dominant model (P=0.001). This result was consistent across the two datasets (P=0.017 and 0.019). The dominant model yielded modest evidence for association (P<0.05) for three additional markers. Covariate-based analyses suggested that genetic variation within FKBP5 may influence attempted suicide and number of depressive episodes in bipolar subjects. Our results are consistent with the well-established relationship between the hypothalamic–pituitary–adrenal (HPA) axis, which mediates the stress response through regulation of cortisol, and mood disorders. Ongoing whole-genome association studies in bipolar disorder and major depression should further clarify the role of FKBP5 and other HPA genes in these illnesses.


PLOS ONE | 2012

Genome-wide DNA methylation scan in major depressive disorder.

Sarven Sabunciyan; Martin J. Aryee; Rafael A. Irizarry; Michael Rongione; Maree J. Webster; Walter E. Kaufman; Peter Murakami; Andrée Lessard; Robert H. Yolken; Andrew P. Feinberg; James B. Potash

While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (pu200a=u200a0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (nu200a=u200a16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at pu200a=u200a0.08. While we cannot draw firm conclusions about PRIMA1 DNAm in MDD, the involvement of neuronal development genes across the set showing differential methylation suggests a role for epigenetics in the illness. Further studies using limbic system brain regions might shed additional light on this role.


American Journal of Human Genetics | 2015

Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder

Robert Maier; G. Moser; Guo-Bo Chen; Stephan Ripke; William Coryell; James B. Potash; William A. Scheftner; Jianxin Shi; Myrna M. Weissman; Christina M. Hultman; Mikael Landén; Douglas F. Levinson; Kenneth S. Kendler; Jordan W. Smoller; Naomi R. Wray; S. Hong Lee

Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk.


Molecular Psychiatry | 2012

A genome-wide association study of attempted suicide

Virginia L. Willour; Fayaz Seifuddin; Pamela B. Mahon; Dubravka Jancic; Mehdi Pirooznia; Jo Steele; Barbara Schweizer; Fernando S. Goes; Francis M. Mondimore; Dean F. MacKinnon; Roy H. Perlis; Phil H. Lee; Jinyan Huang; John R. Kelsoe; Paul D. Shilling; Marcella Rietschel; Markus M. Nöthen; Sven Cichon; H M D Gurling; Shaun Purcell; Jordan W. Smoller; Nicholas John Craddock; J. R. DePaulo; Thomas G. Schulze; Francis J. McMahon; Peter P. Zandi; James B. Potash

The heritable component to attempted and completed suicide is partly related to psychiatric disorders and also partly independent of them. Although attempted suicide linkage regions have been identified on 2p11-12 and 6q25-26, there are likely many more such loci, the discovery of which will require a much higher resolution approach, such as the genome-wide association study (GWAS). With this in mind, we conducted an attempted suicide GWAS that compared the single-nucleotide polymorphism (SNP) genotypes of 1201 bipolar (BP) subjects with a history of suicide attempts to the genotypes of 1497 BP subjects without a history of suicide attempts. In all, 2507 SNPs with evidence for association at P<0.001 were identified. These associated SNPs were subsequently tested for association in a large and independent BP sample set. None of these SNPs were significantly associated in the replication sample after correcting for multiple testing, but the combined analysis of the two sample sets produced an association signal on 2p25 (rs300774) at the threshold of genome-wide significance (P=5.07 × 10−8). The associated SNPs on 2p25 fall in a large linkage disequilibrium block containing the ACP1 (acid phosphatase 1) gene, a gene whose expression is significantly elevated in BP subjects who have completed suicide. Furthermore, the ACP1 protein is a tyrosine phosphatase that influences Wnt signaling, a pathway regulated by lithium, making ACP1 a functional candidate for involvement in the phenotype. Larger GWAS sample sets will be required to confirm the signal on 2p25 and to identify additional genetic risk factors increasing susceptibility for attempted suicide.


Cancer Discovery | 2016

Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer

Nicholas J. Roberts; Alexis L. Norris; Gloria M. Petersen; Melissa L. Bondy; Randall E. Brand; Steven Gallinger; Robert C. Kurtz; Sara H. Olson; Anil K. Rustgi; Ann G. Schwartz; Elena M. Stoffel; Sapna Syngal; George Zogopoulos; Syed Z. Ali; Jennifer E. Axilbund; Kari G. Chaffee; Yun-Ching Chen; Michele L. Cote; Erica J. Childs; Christopher Douville; Fernando S. Goes; Joseph M. Herman; Christine A. Iacobuzio-Donahue; Melissa Kramer; Alvin Makohon-Moore; Richard McCombie; K. Wyatt McMahon; Noushin Niknafs; Jennifer Parla; Mehdi Pirooznia

UNLABELLEDnPancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genomes of 638 patients with familial pancreatic cancer and the tumor exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A, and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types.nnnSIGNIFICANCEnThe genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer.


PLOS ONE | 2013

Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report

Mirko Manchia; Mazda Adli; Nirmala Akula; Raffaella Ardau; Jean-Michel Aubry; Lena Backlund; Cláudio E. M. Banzato; Bernhard T. Baune; Frank Bellivier; Susanne A. Bengesser; Joanna M. Biernacka; Clara Brichant-Petitjean; Elise Bui; Cynthia V. Calkin; Andrew Cheng; Caterina Chillotti; Sven Cichon; Scott R. Clark; Piotr M. Czerski; Clarissa de Rosalmeida Dantas; Maria Del Zompo; J. Raymond DePaulo; Sevilla D. Detera-Wadleigh; Bruno Etain; Peter Falkai; Louise Frisén; Mark A. Frye; Janice M. Fullerton; Sébastien Gard; Julie Garnham

Objective The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the “Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder” scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (κ)] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (κu200a=u200a0.66 and κu200a=u200a0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (ICC1u200a=u200a0.71 and ICC2u200a=u200a0.75, respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.


Psychological Medicine | 2012

Co-morbid anxiety disorders in bipolar disorder and major depression: familial aggregation and clinical characteristics of co-morbid panic disorder, social phobia, specific phobia and obsessive-compulsive disorder.

Fernando S. Goes; M. G. McCusker; Oscar J. Bienvenu; Dean F. MacKinnon; Francis M. Mondimore; Barbara Schweizer; J. R. DePaulo; James B. Potash

BACKGROUNDnCo-morbidity of mood and anxiety disorders is common and often associated with greater illness severity. This study investigates clinical correlates and familiality of four anxiety disorders in a large sample of bipolar disorder (BP) and major depressive disorder (MDD) pedigrees.nnnMETHODnThe sample comprised 566 BP families with 1416 affected subjects and 675 MDD families with 1726 affected subjects. Clinical characteristics and familiality of panic disorder, social phobia, specific phobia and obsessive-compulsive disorder (OCD) were examined in BP and MDD pedigrees with multivariate modeling using generalized estimating equations.nnnRESULTSnCo-morbidity between mood and anxiety disorders was associated with several markers of clinical severity, including earlier age of onset, greater number of depressive episodes and higher prevalence of attempted suicide, when compared with mood disorder without co-morbid anxiety. Familial aggregation was found with co-morbid panic and OCD in both BP and MDD pedigrees. Specific phobia showed familial aggregation in both MDD and BP families, although the findings in BP were just short of statistical significance after adjusting for other anxiety co-morbidities. We found no evidence for familiality of social phobia.nnnCONCLUSIONSnOur findings suggest that co-morbidity of MDD and BP with specific anxiety disorders (OCD, panic disorder and specific phobia) is at least partly due to familial factors, which may be of relevance to both phenotypic and genetic studies of co-morbidity.


Psychopharmacology | 2013

Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults

Pamela B. Mahon; Peter P. Zandi; James B. Potash; Gerald Nestadt; Gary S. Wand

RationaleChronic dysregulation of hypothalamus–pituitary–adrenal (HPA) axis activity is related to several neuropsychiatric disorders. Studies suggest that cortisol response to stress has a strong genetic etiology, and that FK506 binding protein 5 (FKBP5) and G-protein coupled type-I CRH receptor (CRHR1) are key proteins regulating response. Variations in the genes encoding these proteins, FKBP5 and CRHR1, have been associated with several neuropsychiatric disorders.ObjectivesWe examined variation in these genes in relation to cortisol response to psychological stress in one of the largest Trier Social Stress Test (TSST) cohorts yet examined.MethodsA total of 368 healthy, young adults underwent the TSST. Salivary cortisol was measured at multiple time points before and after the stressor. Nine variants in FKBP5 and four in CRHR1 were assessed. Single marker analyses were conducted. Secondary analyses assessed haplotypes and interaction with stress-related variables.ResultsThe strongest association was for rs4713902 in FKBP5 with baseline cortisol (pdomu2009=u20090.0004). We also identified a male-specific effect of FKBP5 polymorphisms on peak response and response area under the curve (pu2009=u20090.0028 for rs3800374). In CRHR1, rs7209436, rs110402, and rs242924 were nominally associated with peak response (precu2009=u20090.0029–0.0047). We observed interactions between trait anxiety and rs7209436 and rs110402 in CRHR1 in association with baseline cortisol (pLRTu2009=u20090.0272 and pLRTu2009=u20090.0483, respectively).ConclusionsWe show association of variants in FKBP5 and CRHR1 with cortisol response to psychosocial stress. These variants were previously shown to be associated with neuropsychiatric disorders. These findings have implications for interindividual variation in HPA axis activity and potentially for the etiology of neuropsychiatric disorders.


Molecular Psychiatry | 2014

Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing.

Alexis Battle; Xiaowei Zhu; James B. Potash; Myrna M. Weissman; Jianxin Shi; Kenneth B. Beckman; Christian D. Haudenschild; Courtney McCormick; R Mei; M J Gameroff; H Gindes; Philip Adams; Fernando S. Goes; Francis M. Mondimore; Dean F. MacKinnon; L Notes; Barbara Schweizer; D Furman; Stephen B. Montgomery; Alexander E. Urban; Daphne Koller; Douglas F. Levinson

A study of genome-wide gene expression in major depressive disorder (MDD) was undertaken in a large population-based sample to determine whether altered expression levels of genes and pathways could provide insights into biological mechanisms that are relevant to this disorder. Gene expression studies have the potential to detect changes that may be because of differences in common or rare genomic sequence variation, environmental factors or their interaction. We recruited a European ancestry sample of 463 individuals with recurrent MDD and 459 controls, obtained self-report and semi-structured interview data about psychiatric and medical history and other environmental variables, sequenced RNA from whole blood and genotyped a genome-wide panel of common single-nucleotide polymorphisms. We used analytical methods to identify MDD-related genes and pathways using all of these sources of information. In analyses of association between MDD and expression levels of 13u2009857 single autosomal genes, accounting for multiple technical, physiological and environmental covariates, a significant excess of low P-values was observed, but there was no significant single-gene association after genome-wide correction. Pathway-based analyses of expression data detected significant association of MDD with increased expression of genes in the interferon α/β signaling pathway. This finding could not be explained by potentially confounding diseases and medications (including antidepressants) or by computationally estimated proportions of white blood cell types. Although cause–effect relationships cannot be determined from these data, the results support the hypothesis that altered immune signaling has a role in the pathogenesis, manifestation, and/or the persistence and progression of MDD.


Translational Psychiatry | 2012

Genome-wide association of mood-incongruent psychotic bipolar disorder

Fernando S. Goes; Marian Lindsay Hamshere; Fayaz Seifuddin; Mehdi Pirooznia; P. Belmonte-Mahon; René Breuer; Thomas G. Schulze; Markus M. Nöthen; S. Cichon; M. Rietschel; Peter Holmans; Peter P. Zandi; Nicholas John Craddock; James B. Potash

Mood-incongruent psychotic features (MICP) are familial symptoms of bipolar disorder (BP) that also occur in schizophrenia (SZ), and may represent manifestations of shared etiology between the major psychoses. In this study we have analyzed three large samples of BP with imputed genome-wide association data and have performed a meta-analysis of 2196 cases with MICP and 8148 controls. We found several regions with suggestive evidence of association (P<10–6), although no marker met genome-wide significance criteria. The top associations were on chromosomes: 6q14.2 within the PRSS35/SNAP91 gene complex (rs1171113, P=9.67 × 10–8); 3p22.2 downstream of TRANK/LBA1 (rs9834970, P=9.71 × 10–8); and 14q24.2 in an intron of NUMB (rs2333194, P=7.03 × 10–7). These associations were present in all three samples, and both rs1171113 and rs2333194 were found to be overrepresented in an analysis of MICP cases compared with all other BP cases. To test the relationship of MICP with SZ, we performed polygenic analysis using the Psychiatric GWAS Consortium SZ results and found evidence of association between SZ polygenes and the presence of MICP in BP cases (meta-analysis P=0.003). In summary, our analysis of the MICP phenotype in BP has provided suggestive evidence for association of common variants in several genes expressed in the nervous system. The results of our polygenic analysis provides support for a modest degree of genetic overlap between BP with MICP and SZ, highlighting that phenotypic correlations across syndromes may be due to the influence of polygenic risk factors.

Collaboration


Dive into the James B. Potash's collaboration.

Top Co-Authors

Avatar

Peter P. Zandi

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis J. McMahon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge