James Cleak
Wellcome Trust Centre for Human Genetics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James Cleak.
Nature | 2011
Thomas M. Keane; Leo Goodstadt; Petr Danecek; Michael A. White; Kim Wong; Binnaz Yalcin; Andreas Heger; Avigail Agam; Guy Slater; Martin Goodson; N A Furlotte; Eleazar Eskin; Christoffer Nellåker; H Whitley; James Cleak; Deborah Janowitz; Polinka Hernandez-Pliego; Andrew Edwards; T G Belgard; Peter L. Oliver; Rebecca E McIntyre; Amarjit Bhomra; Jérôme Nicod; Xiangchao Gan; Wei Yuan; L van der Weyden; Charles A. Steward; Sendu Bala; Jim Stalker; Richard Mott
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.
Cell | 2007
David A. Keays; Guoling Tian; Karine Poirier; Guo-Jen Huang; Christian Siebold; James Cleak; Peter L. Oliver; Martin Fray; Robert J. Harvey; Zoltán Molnár; Maria Carmen Piñon; Neil Dear; William Valdar; Steve D.M. Brown; Kay E. Davies; J. Nicholas P. Rawlins; Nicholas J. Cowan; Patrick M. Nolan; Jamel Chelly; Jonathan Flint
Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.
Nature | 2011
Binnaz Yalcin; Kim Wong; Avigail Agam; Martin Goodson; Thomas M. Keane; Xiangchao Gan; Christoffer Nellåker; Leo Goodstadt; Jérôme Nicod; Amarjit Bhomra; Polinka Hernandez-Pliego; Helen Whitley; James Cleak; Rebekah Dutton; Deborah Janowitz; Richard Mott; David J. Adams; Jonathan Flint
Structural variation is widespread in mammalian genomes and is an important cause of disease, but just how abundant and important structural variants (SVs) are in shaping phenotypic variation remains unclear. Without knowing how many SVs there are, and how they arise, it is difficult to discover what they do. Combining experimental with automated analyses, we identified 711,920 SVs at 281,243 sites in the genomes of thirteen classical and four wild-derived inbred mouse strains. The majority of SVs are less than 1 kilobase in size and 98% are deletions or insertions. The breakpoints of 160,000 SVs were mapped to base pair resolution, allowing us to infer that insertion of retrotransposons causes more than half of SVs. Yet, despite their prevalence, SVs are less likely than other sequence variants to cause gene expression or quantitative phenotypic variation. We identified 24 SVs that disrupt coding exons, acting as rare variants of large effect on gene function. One-third of the genes so affected have immunological functions.
Nature | 2016
Mary E. Dickinson; Ann M. Flenniken; Xiao Ji; Lydia Teboul; Michael D. Wong; Jacqueline K. White; Terrence F. Meehan; Wolfgang J. Weninger; Henrik Westerberg; Hibret Adissu; Candice N. Baker; Lynette Bower; James Brown; L. Brianna Caddle; Francesco Chiani; Dave Clary; James Cleak; Mark J. Daly; James M. Denegre; Brendan Doe; Mary E. Dolan; Sarah M. Edie; Helmut Fuchs; Valérie Gailus-Durner; Antonella Galli; Alessia Gambadoro; Juan Gallegos; Shiying Guo; Neil R. Horner; Chih-Wei Hsu
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
Genome Research | 2011
Caroline Durrant; Hanna Tayem; Binnaz Yalcin; James Cleak; Leo Goodstadt; Fernando Pardo-Manuel de Villena; Richard Mott; Fuad A. Iraqi
The Collaborative Cross (CC) is a genetic reference panel of recombinant inbred lines of mice, designed for the dissection of complex traits and gene networks. Each line is independently descended from eight genetically diverse founder strains such that the genomes of the CC lines, once fully inbred, are fine-grained homozygous mosaics of the founder haplotypes. We present an analysis of 120 CC lines, from a cohort of the CC bred at Tel Aviv University in collaboration with the University of Oxford, which at the time of this study were between the sixth and 12th generations of inbreeding and substantially homozygous at 170,000 SNPs. We show how CC genomes decompose into mosaics, and we identify loci that carry a deficiency or excess of a founder, many being deficient for the wild-derived strains WSB/EiJ and PWK/PhJ. We phenotyped 371 mice from 66 CC lines for a susceptibility to Aspergillus fumigatus infection. The survival time after infection varied significantly between CC lines. Quantitative trait locus (QTL) mapping identified genome-wide significant QTLs on chromosomes 2, 3, 8, 10 (two QTLs), 15, and 18. Simulations show that QTL mapping resolution (the median distance between the QTL peak and true location) varied between 0.47 and 1.18 Mb. Most of the QTLs involved contrasts between wild-derived founder strains and therefore would not segregate between classical inbred strains. Use of variation data from the genomes of the CC founder strains refined these QTLs further and suggested several candidate genes. These results support the use of the CC for dissecting complex traits.
Cell | 2014
Richard Mott; Wei Yuan; Pamela J. Kaisaki; Xiangchao Gan; James Cleak; Andrew Edwards; Amelie Baud; Jonathan Flint
Summary The number of imprinted genes in the mammalian genome is predicted to be small, yet we show here, in a survey of 97 traits measured in outbred mice, that most phenotypes display parent-of-origin effects that are partially confounded with family structure. To address this contradiction, using reciprocal F1 crosses, we investigated the effects of knocking out two nonimprinted candidate genes, Man1a2 and H2-ab1, that reside at nonimprinted loci but that show parent-of-origin effects. We show that expression of multiple genes becomes dysregulated in a sex-, tissue-, and parent-of-origin-dependent manner. We provide evidence that nonimprinted genes can generate parent-of-origin effects by interaction with imprinted loci and deduce that the importance of the number of imprinted genes is secondary to their interactions. We propose that this gene network effect may account for some of the missing heritability seen when comparing sibling-based to population-based studies of the phenotypic effects of genetic variants.
Developmental Neuroscience | 2010
David A. Keays; James Cleak; Guo-Jen Huang; Andrew Edwards; Andreas Braun; Christoph Daniel Treiber; Ruth Pidsley; Jonathan Flint
The multitubulin hypothesis holds that each tubulin isotype serves a unique role with respect to microtubule function. Here we investigate the role of the α-tubulin subunit Tuba1a in adult hippocampal neurogenesis and the formation of the dentate gyrus. Employing birth date labelling and immunohistological markers, we show that mice harbouring an S140G mutation in Tuba1a present with normal neurogenic potential, but that this neurogenesis is often ectopic. Morphological analysis of the dentate gyrus in adulthood revealed a disorganised subgranular zone and a dispersed granule cell layer. We have shown that these anatomical abnormalities are due to defective migration of prospero-homeobox-1-positive neurons and T-box-brain-2-positive progenitors during development. Such migratory defects may also be responsible for the cytoarchitectural defects observed in the dentate gyrus of patients with mutations in TUBA1A.
Neuroscience | 2011
Andrew Edwards; Christoph Daniel Treiber; Martin Breuss; Ruth Pidsley; Guo-Jen Huang; James Cleak; Peter L. Oliver; Jonathan Flint; David A. Keays
The Jenna mutant mouse harbours an S140G mutation in Tuba1a that impairs tubulin heterodimer formation resulting in defective neuronal migration during development. The consequence of decreased neuronal motility is a fractured pyramidal cell layer in the hippocampus and wave-like perturbations in the cerebral cortex. Here, we extend our characterisation of this mouse investigating the laminar architecture of the superior colliculus (SC). Our results reveal that the structure of the SC in mutant animals is intact; however, it is significantly thinner with an apparent fusion of the intermediate grey and white layers. Birthdate labelling at E12.5 and E13.5 showed that the S140G mutation impairs the radial migration of neurons in the SC. A quantitative assessment of neuronal number in adulthood reveals a massive reduction in postmitotic neurons in mutant animals, which we attribute to increased apoptotic cell death. Consistent with the role of the SC in modulating sensorimotor gating, and the circuitry that modulates this behaviour, we find that Jenna mutants exhibit an exaggerated acoustic startle response. Our results highlight the importance of Tuba1a for correct neuronal migration and implicate postnatal apoptotic cell death in the pathophysiological mechanisms underlying the tubulinopathies.
Nature | 2017
Mary E. Dickinson; Ann M. Flenniken; Xiao Ji; Lydia Teboul; Michael D. Wong; Jacqueline K. White; Terrence F. Meehan; Wolfgang J. Weninger; Henrik Westerberg; Hibret Adissu; Candice N. Baker; Lynette Bower; James Brown; L. Brianna Caddle; Francesco Chiani; Dave Clary; James Cleak; Mark J. Daly; James M. Denegre; Brendan Doe; Mary E. Dolan; Sarah M. Edie Helmut Fuchs; Valérie Gailus-Durner; Antonella Galli; Alessia Gambadoro; Juan Gallegos; Shiying Guo; Neil R. Horner; Chih-Wei Hsu; Sara J. Johnson
This corrects the article DOI: 10.1038/nature19356
PLOS Genetics | 2010
Binnaz Yalcin; Jérôme Nicod; Amarjit Bhomra; Stuart Davidson; James Cleak; Laurent Farinelli; Magne Østerås; Adam Whitley; Wei Yuan; Xiangchao Gan; Martin Goodson; Paul Klenerman; Ansu Satpathy; Diane Mathis; Christophe Benoist; David J. Adams; Richard Mott; Jonathan Flint