Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Begg is active.

Publication


Featured researches published by James D. Begg.


Environmental Science & Technology | 2010

Geomicrobiological Redox Cycling of the Transuranic Element Neptunium

Gareth T. W. Law; Andrea Geissler; Jonathan R. Lloyd; Francis R. Livens; Christopher Boothman; James D. Begg; Melissa A. Denecke; Jörg Rothe; Kathy Dardenne; Ian T. Burke; John M. Charnock; Katherine Morris

Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.


Environmental Science & Technology | 2013

Pu(V) and Pu(IV) Sorption to Montmorillonite

James D. Begg; Mavrik Zavarin; Pihong Zhao; Scott J. Tumey; Brian A. Powell; Annie B. Kersting

Plutonium (Pu) adsorption to and desorption from mineral phases plays a key role in controlling the environmental mobility of Pu. Here we assess whether the adsorption behavior of Pu at concentrations used in typical laboratory studies (≥10(-10) [Pu] ≤ 10(-6) M) are representative of adsorption behavior at concentrations measured in natural subsurface waters (generally <10(-12) M). Pu(V) sorption to Na-montmorillonite was examined over a wide range of initial Pu concentrations (10(-6)-10(-16) M). Pu(V) adsorption after 30 days was linear over the wide range of concentrations studied, indicating that Pu sorption behavior from laboratory studies at higher concentrations can be extrapolated to sorption behavior at low, environmentally relevant concentrations. Pu(IV) sorption to montmorillonite was studied at initial concentrations of 10(-6)-10(-11) M and was much faster than Pu(V) sorption over the 30 day equilibration period. However, after one year of equilibration, the extent of Pu(V) adsorption was similar to that observed for Pu(IV) after 30 days. The continued uptake of Pu(V) is attributed to a slow, surface-mediated reduction of Pu(V) to Pu(IV). Comparison between rates of adsorption of Pu(V) to montmorillonite and a range of other minerals (hematite, goethite, magnetite, groutite, corundum, diaspore, and quartz) found that minerals containing significant Fe and Mn (hematite, goethite, magnetite, and groutite) adsorbed Pu(V) faster than those which did not, highlighting the potential importance of minerals with redox couples in increasing the rate of Pu(V) removal from solution.


Geomicrobiology Journal | 2011

Bioreduction Behavior of U(VI) Sorbed to Sediments

James D. Begg; Ian T. Burke; Jonathan R. Lloyd; Chris Boothman; Samual Shaw; John M. Charnock; Katherine Morris

It is well known that microbially mediated reduction can result in the removal of U(VI)(aq) from solution by forming poorly soluble U(IV) oxides; however, the fate of U(VI) already associated with mineral surfaces is less clear. Here we describe results from both oxic adsorption and anaerobic microcosm experiments to examine the fate of sorbed U(VI) during microbially mediated bioreduction. The microcosm experiments contained sediment representative of the nuclear facility at Dounreay, UK. In oxic adsorption experiments, uptake of U(VI) was rapid and complete from artificial groundwater and where groundwater was amended with 0.2 mmol l−1 ethylenediaminetetraacetic acid (EDTA) a complexing ligand used in nuclear fuel cycle operations. By contrast, uptake of U(VI) was incomplete in groundwaters amended with 10 mmol l−1 bicarbonate. Analysis of sediments using X-ray adsorption spectroscopy showed that in these oxic samples, U was present as U(VI). After anaerobic incubation of U(VI) labelled sediments for 120 days, microbially mediated Fe(III)- and SO4 2−- reducing conditions had developed and XAS data showed uranium was reduced to U(IV). Further investigation of the unamended groundwater systems, where oxic systems were dominated by U(VI) sorption, showed that reduction of sorbed U(VI) required an active microbial population and occurred after robust iron- and sulfate- reducing conditions had developed. Microbial community analysis of the bioreduced sediment showed a community shift compared to the oxic sediment with close relatives of Geobacter and Clostridium species, which are known to facilitate U(VI) reduction, dominating. Overall, efficient U(VI) removal from solution by adsorption under oxic conditions dominated in unamended and EDTA amended systems. In all systems bioreduction resulted in the formation of U(IV) in solids.


Radiochimica Acta | 2008

Technetium reduction and reoxidation behaviour in Dounreay soils.

James D. Begg; Ian T. Burke; John M. Charnock; Katherine Morris

Abstract Technetium is a radioactive contaminant found in groundwaters at sites where nuclear wastes have been processed or stored. The redox chemistry of technetium is a major control on its environmental mobility. Under oxic conditions, technetium exists as the pertechnetate ion, Tc(VII)O4−, which is poorly sorbed by minerals across a wide range of environmentally relevant pH values. Under reducing conditions pertechnetate is converted to lower valency species, of which Tc(IV) tends to predominate. Typically, the Tc(IV) oxidation state readily precipitates as insoluble hydrous Tc(IV) oxides or, at low concentrations, is removed from solution by association with mineral surfaces. Here, we present novel X-ray absorption spectroscopy (XAS) data examining Tc associations with reduced Dounreay soils. In reduced unamended microcosms and in microcosms where we added the co-contaminants ethylenediaminetetraacetic acid (EDTA) or bicarbonate to investigate their effect on Tc biogeochemistry, Tc was removed from solution on exposure to the reduced sediments and was present on solids as hydrous Tc(IV)O2-like phases. Furthermore, to investigate the long term stability and remobilization of solid phase associated Tc in reduced soils, we reoxidized reduced, Tc(IV)-labeled soils, in the presence of air and nitrate. The extent of remobilization of Tc to solution was dependent on the oxidant used. After reoxidation with air for 60 d, (42±6)% of the initial soil bound Tc was resolubilized. In the presence of 25 or 100 mmol L−1 nitrate as an oxidant, negligible microcosm reoxidation or remobilization of Tc to solution occurred. XAS analysis of soils treated with the two oxidants showed that in both systems, the remaining soil associated Tc was present as hydrous TcO2-like phases. The recalcitrance of Tc remobilization under reoxidizing conditions has implications for the fate of Tc in contaminated environments.


Environmental Science & Technology | 2015

Effect of Fulvic Acid Surface Coatings on Plutonium Sorption and Desorption Kinetics on Goethite

Ruth M. Tinnacher; James D. Begg; Harris E. Mason; James F. Ranville; Brian A. Powell; Jennifer C. Wong; Annie B. Kersting; Mavrik Zavarin

The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presence of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu-FA-mineral complexes could enhance colloid-facilitated Pu transport. However, more representative natural conditions need to be investigated to quantify the relevance of these findings.


Environmental Science & Technology | 2014

Plutonium desorption from mineral surfaces at environmental concentrations of hydrogen peroxide

James D. Begg; Mavrik Zavarin; Annie B. Kersting

Knowledge of Pu adsorption and desorption behavior on mineral surfaces is crucial for understanding its environmental mobility. Here we demonstrate that environmental concentrations of H2O2 can affect the stability of Pu adsorbed to goethite, montmorillonite, and quartz across a wide range of pH values. In batch experiments where Pu(IV) was adsorbed to goethite for 21 days at pH 4, 6, and 8, the addition of 5-500 μM H2O2 resulted in significant Pu desorption. At pH 6 and 8 this desorption was transient with readsorption of the Pu to goethite within 30 days. At pH 4, no Pu readsorption was observed. Experiments with both quartz and montmorillonite at 5 μM H2O2 desorbed far less Pu than in the goethite experiments highlighting the contribution of Fe redox couples in controlling Pu desorption at low H2O2 concentrations. Plutonium(IV) adsorbed to quartz and subsequently spiked with 500 μM H2O2 resulted in significant desorption of Pu, demonstrating the complexity of the desorption process. Our results provide the first evidence of H2O2-driven desorption of Pu(IV) from mineral surfaces. We suggest that this reaction pathway coupled with environmental levels of hydrogen peroxide may contribute to Pu mobility in the environment.


Journal of Environmental Radioactivity | 2015

Plutonium sorption and desorption behavior on bentonite.

James D. Begg; Mavrik Zavarin; Scott J. Tumey; Annie B. Kersting

Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite.


Science of The Total Environment | 2018

Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite

Chad B. Durrant; James D. Begg; Annie B. Kersting; Mavrik Zavarin

Understanding sorption and desorption processes is essential to predicting the mobility of radionuclides in the environment. We investigate adsorption/desorption of cesium in both binary (Cs+one mineral) and ternary (Cs+two minerals) experiments to study component additivity and sorption reversibility over long time periods (500days). Binary Cs sorption experiments were performed with illite, montmorillonite, and kaolinite in a 5mM NaCl/0.7mM NaHCO3 solution (pH8) and Cs concentration range of 10-3 to 10-11M. The binary sorption experiments were followed by batch desorption experiments. The sorption behavior was modeled with the FIT4FD code and the results used to predict desorption behavior. Sorption to montmorillonite and kaolinite was linear over the entire concentration range but sorption to illite was non-linear, indicating the presence of multiple sorption sites. Based on the 14day batch desorption data, cesium sorption appeared irreversible at high surface loadings in the case of illite but reversible at all concentrations for montmorillonite and kaolinite. A novel experimental approach, using a dialysis membrane, was adopted in the ternary experiments, allowing investigation of the effect of a second mineral on Cs desorption from the original mineral. Cs was first sorbed to illite, montmorillonite or kaolinite, then a 3.5-5kDalton Float-A-Lyzer® dialysis bag with 0.3g of illite was introduced to each experiment inducing desorption. Nearly complete Cs desorption from kaolinite and montmorillonite was observed over the experiment, consistent with our equilibrium model, indicating complete Cs desorption from these minerals. Results from the long-term ternary experiments show significantly greater Cs desorption compared to the binary desorption experiments. Approximately ~45% of Cs desorbed from illite. However, our equilibrium model predicted ~65% desorption. Importantly, the data imply that in some cases, slow desorption kinetics rather than permanent fixation may play an important role in apparent irreversible Cs sorption.


Environmental Science & Technology | 2016

Plutonium(IV) and (V) Sorption to Goethite at Sub-Femtomolar to Micromolar Concentrations: Redox Transformations and Surface Precipitation

Pihong Zhao; James D. Begg; Mavrik Zavarin; Scott J. Tumey; Ross W. Williams; Zurong R. Dai; Ruth Kips; Annie B. Kersting

Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10(-15)-10(-5) M at pH 8. Experiments with initial Pu concentrations of 10(-15) - 10(-8) M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of the initial Pu oxidation state. At initial concentrations >10(-8) M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10(-8) - 10(-6) M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10(-6) M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu4O7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.


Radiochimica Acta | 2015

Effect of equilibration time on Pu desorption from goethite

Jennifer C. Wong; Mavrik Zavarin; James D. Begg; Annie B. Kersting; Brian A. Powell

Abstract It has been suggested that strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time which has implications for near- and far-field transport of Pu. Batch adsorption–desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethite was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.

Collaboration


Dive into the James D. Begg's collaboration.

Top Co-Authors

Avatar

Annie B. Kersting

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mavrik Zavarin

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pihong Zhao

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge