Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mavrik Zavarin is active.

Publication


Featured researches published by Mavrik Zavarin.


Geoderma | 2002

Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials

Daniel G. Strawn; Harvey E. Doner; Mavrik Zavarin; Scott A. McHugo

Abstract In this study, we report on the distribution and mineralogy of micron-sized mineral aggregates formed in the top horizon of an acid sulfate soil. The distribution and oxidation state of arsenic (As) and selenium (Se) were also determined. The soil used in this study was formed from pyritic shale parent materials on the east side of the California Coast Range. Synchrotron-based X-ray fluorescence microprobe (μ-XRF) was used to generate elemental distribution maps of soil thin sections. Using the elemental distribution maps and optical micrographs, distinct mineral aggregates of iron oxide and iron sulfate were identified throughout the top horizon of the soil. These aggregates range in size from 10 to 100 μm in diameter and can be found only a few micrometers apart. The As and Se concentrations in the iron oxide aggregates were 5–10 times the concentrations in the iron sulfate aggregates and the weathered shale matrix. This suggests that the As and Se become preferentially associated with iron oxides during the weathering process. Using a focused micron-sized beam, Fe, As, and Se X-ray absorption spectroscopy (XAS) data were collected from the sub-millimeter soil aggregates. The micro-extended X-ray absorption fine structure (μ-EXAFS) spectrum collected from the iron oxide aggregate revealed that its mineralogy was a combination of ferrihydrite (>50%) and goethite. The μ-EXAFS spectra from the iron sulfate region suggest that these aggregates contain jarosite. Using micro-X-ray absorption near edge spectroscopy (μ-XANES), oxidation states of the As and Se were determined. Arsenic was present in the iron oxide aggregate as As(V). Selenium was present in the soil as both Se(IV) and Se(VI), with a higher percentage of Se(VI) in the jarosite aggregate than the iron oxide aggregate. These results provide direct evidence of the distribution, oxidation states, and speciation of As and Se in the solid phase of an unaltered native soil. Information on the weathering and geochemistry of the pyritic materials, and the associated arsenic and selenium is useful for predicting the pedogenic processes of acid sulfate soils and the long-term fate of newly exposed pyritic materials (e.g., mine tailings and drained wetlands).


Environmental Science & Technology | 2011

Stabilization of Plutonium Nano-Colloids by Epitaxial Distortion on Mineral Surfaces

Brian A. Powell; Zurong Dai; Mavrik Zavarin; Pihong Zhao; Annie B. Kersting

The subsurface migration of Pu may be enhanced by the presence of colloidal forms of Pu. Therefore, complete evaluation of the risk posed by subsurface Pu contamination needs to include a detailed physical/chemical understanding of Pu colloid formation and interactions of Pu colloids with environmentally relevant solid phases. Transmission electron microscopy (TEM) was used to characterize Pu nanocolloids and interactions of Pu nanocolloids with goethite and quartz. We report that intrinsic Pu nanocolloids generated in the absence of goethite or quartz were 2-5 nm in diameter, and both electron diffraction analysis and HRTEM confirm the expected Fm3m space group with the fcc, PuO2 structure. Plutonium nanocolloids formed on goethite have undergone a lattice distortion relative to the ideal fluorite-type structure, fcc, PuO2, resulting in the formation of a bcc, Pu4O7 structure. This structural distortion results from an epitaxial growth of the plutonium colloid on goethite, leading to stronger binding of plutonium to goethite compared with other minerals such as quartz, where the distortion was not observed. This finding provides new insight for understanding how molecular-scale behavior at the mineral-water interface may facilitate transport of plutonium at the field scale.


Environmental Science & Technology | 2012

Np(V) and Pu(V) Ion Exchange and Surface-Mediated Reduction Mechanisms on Montmorillonite

Mavrik Zavarin; Brian A. Powell; Mathilde Bourbin; Pihong Zhao; Annie B. Kersting

Due to their ubiquity and chemical reactivity, aluminosilicate clays play an important role in actinide retardation and colloid-facilitated transport in the environment. In this work, Pu(V) and Np(V) sorption to Na-montmorillonite was examined as a function of ionic strength, pH, and time. Np(V) sorption equilibrium was reached within 2 h. Sorption was relatively weak and showed a pH and ionic strength dependence. An approximate NpO(2)(+) → Na(+) Vanselow ion exchange coefficient (Kv) was determined on the basis of Np(V) sorption in 0.01 and 1.0 M NaCl solutions at pH < 5 (Kv ~ 0.3). In contrast to Np(V), Pu(V) sorption equilibrium was not achieved on the time-scale of weeks. Pu(V) sorption was much stronger than Np(V), and sorption rates exhibited both a pH and ionic strength dependence. Differences in Np(V) and Pu(V) sorption behavior are indicative of surface-mediated transformation of Pu(V) to Pu(IV) which has been reported for a number of redox-active and redox-inactive minerals. A model of the pH and ionic strength dependence of Pu(V) sorption rates suggests that H(+) exchangeable cations facilitate Pu(V) reduction. While surface complexation may play a dominant role in Pu sorption and colloid-facilitated transport under alkaline conditions, results from this study suggest that Pu(V) ion exchange and surface-mediated reduction to Pu(IV) can immobilize Pu or enhance its colloid-facilitated transport in the environment at neutral to mildly acidic pHs.


Clays and Clay Minerals | 1999

Spectroscopy study of arsenite [As(III)] oxidation on Mn-substituted goethite

Xiaohua Sun; Harvey E. Doner; Mavrik Zavarin

Mn-substituted goethite was synthesized and the interaction between arsenite (As(III)) and Mn-substituted goethite was investigated by both solution chemistry and X-ray adsorption near edge structure (XANES) spectroscopy. Results indicate that the oxidation of As(III) is favored by Mn-substituted goethite. This reaction was more sensitive to temperature than to pH. Different reaction mechanisms may account for As(III) oxidation. Since As(III) is more mobile and toxic than As(V), the oxidation reaction of As(III) with Mn-substituted goethite may decrease arsenic toxicity under some conditions.


Environmental Science & Technology | 2013

Pu(V) and Pu(IV) Sorption to Montmorillonite

James D. Begg; Mavrik Zavarin; Pihong Zhao; Scott J. Tumey; Brian A. Powell; Annie B. Kersting

Plutonium (Pu) adsorption to and desorption from mineral phases plays a key role in controlling the environmental mobility of Pu. Here we assess whether the adsorption behavior of Pu at concentrations used in typical laboratory studies (≥10(-10) [Pu] ≤ 10(-6) M) are representative of adsorption behavior at concentrations measured in natural subsurface waters (generally <10(-12) M). Pu(V) sorption to Na-montmorillonite was examined over a wide range of initial Pu concentrations (10(-6)-10(-16) M). Pu(V) adsorption after 30 days was linear over the wide range of concentrations studied, indicating that Pu sorption behavior from laboratory studies at higher concentrations can be extrapolated to sorption behavior at low, environmentally relevant concentrations. Pu(IV) sorption to montmorillonite was studied at initial concentrations of 10(-6)-10(-11) M and was much faster than Pu(V) sorption over the 30 day equilibration period. However, after one year of equilibration, the extent of Pu(V) adsorption was similar to that observed for Pu(IV) after 30 days. The continued uptake of Pu(V) is attributed to a slow, surface-mediated reduction of Pu(V) to Pu(IV). Comparison between rates of adsorption of Pu(V) to montmorillonite and a range of other minerals (hematite, goethite, magnetite, groutite, corundum, diaspore, and quartz) found that minerals containing significant Fe and Mn (hematite, goethite, magnetite, and groutite) adsorbed Pu(V) faster than those which did not, highlighting the potential importance of minerals with redox couples in increasing the rate of Pu(V) removal from solution.


Geochemical Transactions | 2008

Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

Qinhong Hu; Mavrik Zavarin; Timothy P. Rose

Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions.Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4.Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various radionuclide environmental contamination scenarios. The implications for increased sorption of 99Tc and 237Np to devitrified tuff under reducing conditions are significant as the fractured devitrified tuff serves as important water flow path at the NTS and the horizon for a proposed repository to store high-level nuclear waste at Yucca Mountain.


Environmental Science & Technology | 2015

Effect of Fulvic Acid Surface Coatings on Plutonium Sorption and Desorption Kinetics on Goethite

Ruth M. Tinnacher; James D. Begg; Harris E. Mason; James F. Ranville; Brian A. Powell; Jennifer C. Wong; Annie B. Kersting; Mavrik Zavarin

The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presence of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu-FA-mineral complexes could enhance colloid-facilitated Pu transport. However, more representative natural conditions need to be investigated to quantify the relevance of these findings.


Journal of Materials Chemistry | 2014

Sorption interactions of plutonium and europium with ordered mesoporous carbon

Tashi Parsons-Moss; Jinxiu Wang; Stephen Jones; Erin May; Daniel Olive; Zurong Dai; Mavrik Zavarin; Annie B. Kersting; Dongyuan Zhao; Heino Nitsche

Both 3d-cubic FDU-16-type and 2d-hexagonal C-CS-type ordered mesoporous carbons (OMCs) were synthesized to test their application as radionuclide sorbent materials. A portion of each OMC was oxidized with acidic ammonium persulfate (APS), and the physicochemical properties of all four OMCs were characterized with several techniques. Based on plutonium (Pu) sorption and desorption tests with FDU-16, oxidized FDU-16-COOH, C-CS, and oxidized C-CS-COOH, the C-CS-COOH was the most effective OMC for sorption of Pu over a wide pH range. Batch sorption interactions of C-CS and C-CS-COOH were further explored with Pu(VI) and Eu(III) to determine the uptake capacities, sorption kinetics, and effects of ionic strength. The nature of the Pu sorption reaction was also probed via X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM). The highly oxidized surface, large pores, and high surface area of C-CS-COOH make it a very effective general scavenger for actinide and lanthanide cations. Pu and Eu uptake by C-CS-COOH appears to be dictated by chemisorption, and the Langmuir Eu capacity (138 mg g−1 from pH 4 solution) is higher than those previously reported for many other adsorbents. Pristine C-CS has a low affinity for Eu(III), but is an excellent sorbent of PuO2 nanocrystals (∼3 nm diameter), which are formed because the carbon reduces Pu(VI) and Pu(V) to Pu(IV). Plutonium is also reduced by C-CS-COOH, but PuO2 colloid formation in pH 4 solution is prevented by carboxyl complexation of Pu(IV) at the C-CS-COOH surface.


Environmental Science & Technology | 2014

Plutonium desorption from mineral surfaces at environmental concentrations of hydrogen peroxide

James D. Begg; Mavrik Zavarin; Annie B. Kersting

Knowledge of Pu adsorption and desorption behavior on mineral surfaces is crucial for understanding its environmental mobility. Here we demonstrate that environmental concentrations of H2O2 can affect the stability of Pu adsorbed to goethite, montmorillonite, and quartz across a wide range of pH values. In batch experiments where Pu(IV) was adsorbed to goethite for 21 days at pH 4, 6, and 8, the addition of 5-500 μM H2O2 resulted in significant Pu desorption. At pH 6 and 8 this desorption was transient with readsorption of the Pu to goethite within 30 days. At pH 4, no Pu readsorption was observed. Experiments with both quartz and montmorillonite at 5 μM H2O2 desorbed far less Pu than in the goethite experiments highlighting the contribution of Fe redox couples in controlling Pu desorption at low H2O2 concentrations. Plutonium(IV) adsorbed to quartz and subsequently spiked with 500 μM H2O2 resulted in significant desorption of Pu, demonstrating the complexity of the desorption process. Our results provide the first evidence of H2O2-driven desorption of Pu(IV) from mineral surfaces. We suggest that this reaction pathway coupled with environmental levels of hydrogen peroxide may contribute to Pu mobility in the environment.


Journal of Environmental Radioactivity | 2015

Plutonium sorption and desorption behavior on bentonite.

James D. Begg; Mavrik Zavarin; Scott J. Tumey; Annie B. Kersting

Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite.

Collaboration


Dive into the Mavrik Zavarin's collaboration.

Top Co-Authors

Avatar

Annie B. Kersting

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pihong Zhao

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Begg

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zurong Dai

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Qinhong Hu

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Ruth M. Tinnacher

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Rose

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Harris E. Mason

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark A. Boggs

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge