Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. Brien is active.

Publication


Featured researches published by James D. Brien.


Journal of Virology | 2010

Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2

Soila Sukupolvi-Petty; S. Kyle Austin; Michael Engle; James D. Brien; Kimberly A. Dowd; Katherine L. Williams; Syd Johnson; Rebeca Rico-Hesse; Eva Harris; Theodore C. Pierson; Daved H. Fremont; Michael S. Diamond

ABSTRACT Dengue virus (DENV) is the most prevalent insect-transmitted viral disease in humans globally, and currently no specific therapy or vaccine is available. Protection against DENV and other related flaviviruses is associated with the development of antibodies against the viral envelope (E) protein. Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV type 2 (DENV-2), none have compared simultaneously the inhibitory activity against a genetically diverse range of strains in vitro, the protective capacity in animals, and the localization of epitopes. Here, with the goal of identifying MAbs that can serve as postexposure therapy, we investigated in detail the functional activity of a large panel of new anti-DENV-2 mouse MAbs. Binding sites were mapped by yeast surface display and neutralization escape, cell culture inhibition assays were performed with homologous and heterologous strains, and prophylactic and therapeutic activity was evaluated with two mouse models. Protective MAbs localized to epitopes on the lateral ridge of domain I (DI), the dimer interface, lateral ridge, and fusion loop of DII, and the lateral ridge, C-C′ loop, and A strand of DIII. Several MAbs inefficiently inhibited at least one DENV-2 strain of a distinct genotype, suggesting that recognition of neutralizing epitopes varies with strain diversity. Moreover, antibody potency generally correlated with a narrowed genotype and serotype specificity. Five MAbs functioned efficiently as postexposure therapy when administered as a single dose, even 3 days after intracranial infection of BALB/c mice. Overall, these studies define the structural and functional complexity of antibodies against DENV-2 with protective potential.


PLOS Pathogens | 2010

The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1

Bimmi Shrestha; James D. Brien; Soila Sukupolvi-Petty; S. Kyle Austin; Melissa A. Edeling; Taekyung Kim; Katie M. O'Brien; Christopher A. Nelson; Syd Johnson; Daved H. Fremont; Michael S. Diamond

Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential.


European Journal of Immunology | 2007

Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection

James D. Brien; Jennifer L. Uhrlaub; Janko Nikolich-Žugich

West Nile virus (WNV) is a small, positive‐strand RNA virus belonging to the Flaviviridae genus, which causes lethal encephalitis in a subset of infected birds and mammals. In humans, WNV exhibits pronounced age‐related morbidity and mortality, but the basis of this effect is unclear, and the molecular and cellular parameters of the host‐WNV infection are just beginning to be elucidated. Indeed, numerous mechanisms were implicated in protection in vivo against WNV (IFN‐I and IFN‐γ, antibody, C’, CD8 and CD4 T cells), but the individual importance of each one of these remains unclear. Here, we show that transfer of highly enriched naïve CD8+ T cells protects the majority of alymphoid mice against lethal WNV infection. To substantiate and expand this finding, we defined the peptide specificity of the CD8 response in H‐2b mice and used a panel of identified peptides to map one dominant (NS4b 2248–2256) and several subdominant epitopes. The hierarchy of these epitopes was stably maintained in the memory responses. Most importantly, CTL lines directed against these peptides conferred protection against lethal WNV infection in direct proportion to the epitope immunodominance. These results provide a springboard for future characterization of T cell responses against WNV and demonstrate, for the first time, that CD8 T cells can single‐handedly protect from this disease.


PLOS Pathogens | 2013

Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus

Pankaj Pal; Kimberly A. Dowd; James D. Brien; Melissa A. Edeling; Sergey Gorlatov; Syd Johnson; Iris Lee; Wataru Akahata; Gary J. Nabel; Mareike K. S. Richter; Jolanda M. Smit; Daved H. Fremont; Theodore C. Pierson; Mark T. Heise; Michael S. Diamond

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


Journal of Virology | 2010

Genotype-specific neutralization and protection by antibodies against dengue virus type 3.

James D. Brien; S. Kyle Austin; Soila Sukupolvi-Petty; Katie M. O'Brien; Syd Johnson; Daved H. Fremont; Michael S. Diamond

ABSTRACT Dengue viruses (DENV) comprise a family of related positive-strand RNA viruses that infect up to 100 million people annually. Currently, there is no approved vaccine or therapy to prevent infection or diminish disease severity. Protection against DENV is associated with the development of neutralizing antibodies that recognize the viral envelope (E) protein. Here, with the goal of identifying monoclonal antibodies (MAbs) that can function as postexposure therapy, we generated a panel of 82 new MAbs against DENV-3, including 24 highly neutralizing MAbs. Using yeast surface display, we localized the epitopes of the most strongly neutralizing MAbs to the lateral ridge of domain III (DIII) of the DENV type 3 (DENV-3) E protein. While several MAbs functioned prophylactically to prevent DENV-3-induced lethality in a stringent intracranial-challenge model of mice, only three MAbs exhibited therapeutic activity against a homologous strain when administered 2 days after infection. Remarkably, no MAb in our panel protected prophylactically against challenge by a strain from a heterologous DENV-3 genotype. Consistent with this, no single MAb neutralized efficiently the nine different DENV-3 strains used in this study, likely because of the sequence variation in DIII within and between genotypes. Our studies suggest that strain diversity may limit the efficacy of MAb therapy or tetravalent vaccines against DENV, as neutralization potency generally correlated with a narrowed genotype specificity.


Journal of Immunology | 2008

West Nile Virus-Specific CD4 T Cells Exhibit Direct Antiviral Cytokine Secretion and Cytotoxicity and Are Sufficient for Antiviral Protection

James D. Brien; Jennifer L. Uhrlaub; Janko Nikolich-Zugich

CD4 T cells have been shown to be necessary for the prevention of encephalitis during West Nile virus (WNV) infection. However, the mechanisms used by Ag-specific CD4 T cells to protect mice from WNV encephalitis remain incompletely understood. Contrary to the belief that CD4 T cells are protective because they merely maintain the CD8 T cell response and improve Ab production, in this study we provide evidence for the direct antiviral activity of CD4 T cells that functions to protect the host from WNV encephalitis. In adoptive transfers, naive CD4 T cells protected a significant number of lethally infected RAG−/− mice, demonstrating the protective effect of CD4 T cells independent of B cells and CD8 T cells. To shed light on the mechanism of this protection, we defined the peptide specificities of the CD4 T cells responding to WNV infection in C57BL/6 (H-2b) mice, and used these peptides to characterize the in vivo function of antiviral CD4 T cells. WNV-specific CD4 T cells produced IFN-γ and IL-2, but also showed potential for in vivo and ex vivo cytotoxicity. Furthermore, peptide vaccination using CD4 epitopes conferred protection against lethal WNV infection in immunocompetent mice. These results demonstrate the role of direct effector function of Ag-specific CD4 T cells in preventing severe WNV disease.


Journal of Experimental Medicine | 2009

Key role of T cell defects in age-related vulnerability to West Nile virus.

James D. Brien; Jennifer L. Uhrlaub; Alec J. Hirsch; Clayton A. Wiley; Janko Nikolich-Žugich

West Nile virus (WNV) infection causes a life-threatening meningoencephalitis that becomes increasingly more prevalent over the age of 50 and is 40–50× more prevalent in people over the age of 70, compared with adults under the age of 40. In a mouse model of age-related vulnerability to WNV, we demonstrate that death correlates with increased viral titers in the brain and that this loss of virus control with age was the result of defects in the CD4 and CD8 T cell response against WNV. Specific age-related defects in T cell responses against dominant WNV epitopes were detected at the level of cytokine and lytic granule production, each of which are essential for resistance against WNV, and in the ability to generate multifunctional anti-WNV effector T cells, which are believed to be critical for robust antiviral immunity. In contrast, at the peak of the response, old and adult T cells exhibited superimposable peptide sensitivity. Most importantly, although the adult CD4 or CD8 T cells readily protected immunodeficient mice upon adoptive transfer, old T cells of either subset were unable to provide WNV-specific protection. Consistent with a profound qualitative and quantitative defect in T cell immunity, old brains contained at least 12× fewer total effector CD8 T cells compared with adult mice at the peak of brain infection. These findings identify potential targets for immunomodulation and treatment to combat lethal WNV infection in the elderly.


Journal of Virology | 2011

The interferon-inducible gene viperin restricts West Nile virus pathogenesis

Kristy J. Szretter; James D. Brien; Larissa B. Thackray; Herbert W. Virgin; Peter Cresswell; Michael S. Diamond

ABSTRACT Type I interferon (IFN) signaling coordinates an early antiviral program in infected and uninfected cells by inducing IFN-stimulated genes (ISGs) that modulate viral entry, replication, and assembly. However, the specific antiviral functions in vivo of most ISGs remain unknown. Here, we examined the contribution of the ISG viperin to the control of West Nile virus (WNV) in genetically deficient cells and mice. While modest increases in levels of WNV replication were observed for primary viperin −/− macrophages and dendritic cells, no appreciable differences were detected in deficient embryonic cortical neurons or fibroblasts. In comparison, viperin−/− adult mice infected with WNV via the subcutaneous or intracranial route showed increased lethality and/or enhanced viral replication in central nervous system (CNS) tissues. In the CNS, viperin expression was induced in both WNV-infected and adjacent uninfected cells, including activated leukocytes at the site of infection. Our experiments suggest that viperin restricts the infection of WNV in a tissue- and cell-type-specific manner and may be an important ISG for controlling viral infections that cause CNS disease.


Journal of Immunology | 2004

Activation of Virus-Specific CD8+ T Cells by Lipopolysaccharide-Induced IL-12 and IL-18

Hans Peter Raué; James D. Brien; Erika Hammarlund; Mark K. Slifka

Virus-specific T cells represent a hallmark of Ag-specific, adaptive immunity. However, some T cells also demonstrate innate functions, including non-Ag-specific IFN-γ production in response to microbial products such as LPS or exposure to IL-12 and/or IL-18. In these studies we examined LPS-induced cytokine responses of CD8+ T cells directly ex vivo. Following acute viral infection, 70–80% of virus-specific T cells will produce IFN-γ after exposure to LPS-induced cytokines, and neutralization experiments indicate that this is mediated almost entirely through production of IL-12 and IL-18. Different combinations of these cytokines revealed that IL-12 decreases the threshold of T cell activation by IL-18, presenting a new perspective on IL-12/IL-18 synergy. Moreover, memory T cells demonstrate high IL-18R expression and respond effectively to the combination of IL-12 and IL-18, but cannot respond to IL-18 alone, even at high cytokine concentrations. This demonstrates that the synergy between IL-12 and IL-18 in triggering IFN-γ production by memory T cells is not simply due to up-regulation of the surface receptor for IL-18, as shown previously with naive T cells. Together, these studies indicate how virus-specific T cells are able to bridge the gap between innate and adaptive immunity during unrelated microbial infections, while attempting to protect the host from cytokine-induced immunopathology and endotoxic shock.


PLOS Pathogens | 2012

Cytomegalovirus Infection Impairs Immune Responses and Accentuates T-cell Pool Changes Observed in Mice with Aging

Luka Cicin-Sain; James D. Brien; Jennifer L. Uhrlaub; Anja Drabig; Thomas F. Marandu; Janko Nikolich-Zugich

Prominent immune alterations associated with aging include the loss of naïve T-cell numbers, diversity and function. While genetic contributors and mechanistic details in the aging process have been addressed in multiple studies, the role of environmental agents in immune aging remains incompletely understood. From the standpoint of environmental infectious agents, latent cytomegalovirus (CMV) infection has been associated with an immune risk profile in the elderly humans, yet the cause-effect relationship of this association remains unclear. Here we present direct experimental evidence that mouse CMV (MCMV) infection results in select T-cell subset changes associated with immune aging, namely the increase of relative and absolute counts of CD8 T-cells in the blood, with a decreased representation of the naïve and the increased representation of the effector memory blood CD8 T-cells. Moreover, MCMV infection resulted in significantly weaker CD8 responses to superinfection with Influenza, Human Herpes Virus I or West-Nile-Virus, even 16 months following MCMV infection. These irreversible losses in T-cell function could not be observed in uninfected or in vaccinia virus-infected controls and were not due to the immune-evasive action of MCMV genes. Rather, the CD8 activation in draining lymph nodes upon viral challenge was decreased in MCMV infected mice and the immune response correlated directly to the frequency of the naïve and inversely to that of the effector cells in the blood CD8 pool. Therefore, latent MCMV infection resulted in pronounced changes of the T-cell compartment consistent with impaired naïve T-cell function.

Collaboration


Dive into the James D. Brien's collaboration.

Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Amelia K. Pinto

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daved H. Fremont

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

S. Kyle Austin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Soila Sukupolvi-Petty

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark K. Slifka

Oregon National Primate Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge