Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. McKay is active.

Publication


Featured researches published by James D. McKay.


Nature | 2008

A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

Rayjean J. Hung; James D. McKay; Valerie Gaborieau; Paolo Boffetta; Mia Hashibe; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; Chu Chen; Gary E. Goodman; John K. Field; Triantafillos Liloglou; George Xinarianos; Adrian Cassidy; John R. McLaughlin; Geoffrey Liu; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Kristian Hveem; Lars J. Vatten; Jakob Linseisen

Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 × 10-10). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 × 10-20 overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N′-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.


Nature Genetics | 2008

Lung cancer susceptibility locus at 5p15.33

James D. McKay; Rayjean J. Hung; Valerie Gaborieau; Paolo Boffetta; Amelie Chabrier; Graham Byrnes; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; John R. McLaughlin; Frances A. Shepherd; Alexandre Montpetit; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Lars J. Vatten; Inger Njølstad; Tomas Axelsson; Chu Chen; Gary E. Goodman; Matt J. Barnett; Melissa M. Loomis

We carried out a genome-wide association study of lung cancer (3,259 cases and 4,159 controls), followed by replication in 2,899 cases and 5,573 controls. Two uncorrelated disease markers at 5p15.33, rs402710 and rs2736100 were detected by the genome-wide data (P = 2 × 10−7 and P = 4 × 10−6) and replicated by the independent study series (P = 7 × 10−5 and P = 0.016). The susceptibility region contains two genes, TERT and CLPTM1L, suggesting that one or both may have a role in lung cancer etiology.


American Journal of Human Genetics | 2009

A Genome-wide Association Study of Lung Cancer Identifies a Region of Chromosome 5p15 Associated with Risk for Adenocarcinoma

Maria Teresa Landi; Nilanjan Chatterjee; Kai Yu; Lynn R. Goldin; Alisa M. Goldstein; Melissa Rotunno; Lisa Mirabello; Kevin B. Jacobs; William Wheeler; Meredith Yeager; Andrew W. Bergen; Qizhai Li; Dario Consonni; Angela Cecilia Pesatori; Sholom Wacholder; Michael J. Thun; Ryan Diver; Martin M. Oken; Jarmo Virtamo; Demetrius Albanes; Zhaoming Wang; Laurie Burdette; Kimberly F. Doheny; Elizabeth W. Pugh; Cathy C. Laurie; Paul Brennan; Rayjean J. Hung; Valerie Gaborieau; James D. McKay; Mark Lathrop

Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR]=1.23, 95% confidence interval [CI]=1.13-1.33, p=3.02x10(-7)), but not with other histologic types (OR=1.01, p=0.84 and OR=1.00, p=0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR=1.24, 95% CI=1.17-1.31, p=3.74x10(-14) for AD; OR=0.99, p=0.69 and OR=0.97, p=0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma.


Journal of the National Cancer Institute | 2010

Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium

Thérèse Truong; Rayjean J. Hung; Christopher I. Amos; Xifeng Wu; Heike Bickeböller; Albert Rosenberger; Wiebke Sauter; Thomas Illig; H.-Erich Wichmann; Angela Risch; Hendrik Dienemann; Rudolph Kaaks; Ping Yang; Ruoxiang Jiang; John K. Wiencke; Margaret Wrensch; Helen M. Hansen; Karl T. Kelsey; Keitaro Matsuo; Kazuo Tajima; Ann G. Schwartz; Angie S. Wenzlaff; Adeline Seow; Chen Ying; Andrea Staratschek-Jox; Peter Nürnberg; Erich Stoelben; Jürgen Wolf; Philip Lazarus; Joshua E. Muscat

BACKGROUND Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies. METHODS Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case-control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided. RESULTS Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, P(trend) = 2 x 10(-26)), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, P(trend) = 1 x 10(-10)) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, P(trend) = 5 x 10(-8)) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, P(trend) = 2 x 10(-5); rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, P(trend) = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer. CONCLUSIONS In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histology.


American Journal of Human Genetics | 2001

Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21.

James D. McKay; Fabienne Lesueur; Laurence Jonard; Alessandro Pastore; Jan Williamson; L Hoffman; John R. Burgess; Anne Duffield; Mauro Papotti; Markus Stark; Hagay Sobol; Béatrice Maes; Arnaud Murat; Helena Kääriäinen; Mireille Bertholon-Grégoire; Michele Zini; Mary Anne Rossing; Marie-Elisabeth Toubert; Françoise Bonichon; Marie Cavarec; Anne-Marie Bernard; Frédéric Leprat; Oskar A. Haas; Christine Lasset; Martin Schlumberger; Federico Canzian; David E. Goldgar; Giovanni Romeo

The familial form of nonmedullary thyroid carcinoma (NMTC) is a complex genetic disorder characterized by multifocal neoplasia and a higher degree of aggressiveness than its sporadic counterpart. In a large Tasmanian pedigree (Tas1) with recurrence of papillary thyroid carcinoma (PTC), the most common form of NMTC, an extensive genomewide scan revealed a common haplotype on chromosome 2q21 in seven of the eight patients with PTC. To verify the significance of the 2q21 locus, we performed linkage analysis in an independent sample set of 80 pedigrees, yielding a multipoint heterogeneity LOD score (HLOD) of 3.07 (alpha=0.42), nonparametric linkage (NPL) 3.19, (P=.001) at marker D2S2271. Stratification based on the presence of at least one case of the follicular variant of PTC, the phenotype observed in the Tas1 family, identified 17 such pedigrees, yielding a maximal HLOD score of 4.17 (alpha=0.80) and NPL=4.99 (P=.00002) at markers AFMa272zg9 and D2S2271, respectively. These results indicate the existence of a susceptibility locus for familial NMTC on chromosome 2q21.


Nature Communications | 2014

Genome-wide association study reveals two new risk loci for bipolar disorder

Thomas W. Muehleisen; Markus Leber; Thomas G. Schulze; Jana Strohmaier; Franziska Degenhardt; Manuel Mattheisen; Andreas J. Forstner; Johannes Schumacher; René Breuer; Sandra Meier; Stefan Herms; Per Hoffmann; André Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; Wolfgang Maier; Markus J. Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus; Lutz Priebe; Piotr M. Czerski; Joanna Hauser; Jolanta Lissowska; Neonila Szeszenia-Dabrowska

Bipolar disorder (BD) is a common and highly heritable mental illness and genome-wide association studies (GWAS) have robustly identified the first common genetic variants involved in disease aetiology. The data also provide strong evidence for the presence of multiple additional risk loci, each contributing a relatively small effect to BD susceptibility. Large samples are necessary to detect these risk loci. Here we present results from the largest BD GWAS to date by investigating 2.3 million single-nucleotide polymorphisms (SNPs) in a sample of 24,025 patients and controls. We detect 56 genome-wide significant SNPs in five chromosomal regions including previously reported risk loci ANK3, ODZ4 and TRANK1, as well as the risk locus ADCY2 (5p15.31) and a region between MIR2113 and POU3F2 (6q16.1). ADCY2 is a key enzyme in cAMP signalling and our finding provides new insights into the biological mechanisms involved in the development of BD.


Nature Genetics | 2008

Multiple ADH genes are associated with upper aerodigestive cancers

Mia Hashibe; James D. McKay; Maria Paula Curado; José Carlos de Oliveira; Sergio Koifman; Rosalina Jorge Koifman; David Zaridze; Oxana Shangina; Victor Wünsch-Filho; José Eluf-Neto; José Eduardo Levi; Elena Matos; Pagona Lagiou; Areti Lagiou; Simone Benhamou; Christine Bouchardy; Neonilia Szeszenia-Dabrowska; Ana M. B. Menezes; Marinel Mór Dall'Agnol; Franco Merletti; Lorenzo Richiardi; Leticia Fernandez; Juan J. Lence; Renato Talamini; Luigi Barzan; Dana Mates; Ioan Nicolae Mates; Kristina Kjaerheim; Gary J. MacFarlane; Tatiana V. MacFarlane

Alcohol is an important risk factor for upper aerodigestive cancers and is principally metabolized by alcohol dehydrogenase (ADH) enzymes. We have investigated six ADH genetic variants in over 3,800 aerodigestive cancer cases and 5,200 controls from three individual studies. Gene variants rs1229984 (ADH1B) and rs1573496 (ADH7) were significantly protective against aerodigestive cancer in each individual study and overall (P = 10−10 and 10−9, respectively). These effects became more apparent with increasing alcohol consumption (P for trend = 0.0002 and 0.065, respectively). Both gene effects were independent of each other, implying that multiple ADH genes may be involved in upper aerodigestive cancer etiology.


European Journal of Human Genetics | 2008

Investigation of the fine structure of European populations with applications to disease association studies

Simon Heath; Ivo Gut; Paul Brennan; James D. McKay; Vladimir Bencko; Eleonora Fabianova; Lenka Foretova; Michael Georges; Vladimir Janout; Michael Kabesch; Hans E. Krokan; Maiken Bratt Elvestad; Jolanta Lissowska; Dana Mates; Peter Rudnai; Frank Skorpen; Stefan Schreiber; José Manuel Soria; Ann-Christine Syvänen; Pierre Meneton; Serge Hercberg; Pilar Galan; Neonilia Szeszenia-Dabrowska; David Zaridze; Emmanuel Génin; Lon R. Cardon; Mark Lathrop

An investigation into fine-scale European population structure was carried out using high-density genetic variation on nearly 6000 individuals originating from across Europe. The individuals were collected as control samples and were genotyped with more than 300 000 SNPs in genome-wide association studies using the Illumina Infinium platform. A major East–West gradient from Russian (Moscow) samples to Spanish samples was identified as the first principal component (PC) of the genetic diversity. The second PC identified a North–South gradient from Norway and Sweden to Romania and Spain. Variation of frequencies at markers in three separate genomic regions, surrounding LCT, HLA and HERC2, were strongly associated with this gradient. The next 18 PCs also accounted for a significant proportion of genetic diversity observed in the sample. We present a method to predict the ethnic origin of samples by comparing the sample genotypes with those from a reference set of samples of known origin. These predictions can be performed using just summary information on the known samples, and individual genotype data are not required. We discuss issues raised by these data and analyses for association studies including the matching of case-only cohorts to appropriate pre-collected control samples for genome-wide association studies.


Nature Genetics | 2014

Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer

Yufei Wang; James D. McKay; Thorunn Rafnar; Zhaoming Wang; Maria Timofeeva; Peter Broderick; Xuchen Zong; Marina Laplana; Yongyue Wei; Younghun Han; Amy Lloyd; Manon Delahaye-Sourdeix; Daniel Chubb; Valerie Gaborieau; William Wheeler; Nilanjan Chatterjee; Gudmar Thorleifsson; Patrick Sulem; Geoffrey Liu; Rudolf Kaaks; Marc Henrion; Ben Kinnersley; Maxime P. Vallée; Florence LeCalvez-Kelm; Victoria L. Stevens; Susan M. Gapstur; Wei Chen; David Zaridze; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska

We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants BRCA2 p.Lys3326X (rs11571833, odds ratio (OR) = 2.47, P = 4.74 × 10−20) and CHEK2 p.Ile157Thr (rs17879961, OR = 0.38, P = 1.27 × 10−13). We also showed an association between common variation at 3q28 (TP63, rs13314271, OR = 1.13, P = 7.22 × 10−10) and lung adenocarcinoma that had been previously reported only in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants with substantive effects on cancer risk from preexisting genome-wide association study data.


Human Molecular Genetics | 2012

Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls

Mn Timofeeva; Rayjean J. Hung; Thorunn Rafnar; David C. Christiani; John K. Field; Heike Bickeböller; Angela Risch; James D. McKay; Yunfei Wang; Juncheng Dai; Gaborieau; John R. McLaughlin; D Brenner; Steven A. Narod; Ne. Caporaso; D Albanes; Michael J. Thun; T. Eisen; H-Erich Wichmann; Albert Rosenberger; Younghun Han; Wei Vivien Chen; D. K. Zhu; Margaret R. Spitz; Xifeng Wu; Mala Pande; Yun Zhao; David Zaridze; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska

Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21–6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10−16), 6p21 (P = 2.3 × 10−14) and 15q25 (P = 2.2 × 10−63). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16INK4A/p14ARF/CDKN2B/p15INK4B/ANRIL; rs1333040, P = 3.0 × 10−7) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10−8). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cancer.

Collaboration


Dive into the James D. McKay's collaboration.

Top Co-Authors

Avatar

Paul Brennan

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar

Valerie Gaborieau

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence Le Calvez-Kelm

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar

Mattias Johansson

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivana Holcatova

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge