Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James D. McMillan is active.

Publication


Featured researches published by James D. McMillan.


Nature Biotechnology | 2008

How biotech can transform biofuels

Lee R. Lynd; Mark Laser; David Bransby; Bruce E. Dale; Brian H. Davison; Richard Hamilton; Michael E. Himmel; Martin Keller; James D. McMillan; John Sheehan; Charles E. Wyman

For cellulosic ethanol to become a reality, biotechnological solutions should focus on optimizing the conversion of biomass to sugars.


Applied Biochemistry and Biotechnology | 2003

Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids.

Daniel J. Schell; Jody Farmer; Millie Newman; James D. McMillan

Corn stover is a domestic feedstock that has potential to produce significant quantities of fuel ethanol and other bioenergy and biobased products. However, comprehensive yield and carbon mass balance information and validated kinetic models for dilute-sulfuric acid (H2SO4) pretreatment of corn stover have not been available. This has hindered the estimation of process economics and also limited the ability to perform technoeconomic modeling to guide research. To better characterize pretreatment and assess its kinetics, we pretreated corn stover in a continuous 1 t/d reactor. Corn stover was pretreated at 20% (w/w) solids concentration over a range of conditions encompassing residence times of 3–12 min, temperatures of 165–195°C, and H2SO4 concentrations of 0.5–1.4% (w/w). Xylan conversion yield and carbon mass balance data were collected at each run condition. Performance results were used to estimate kinetic model parameters assuming biphasic hemicellulose hydrolysis and a hydrolysis mechanism incorporating formation of intermediate xylo-oligomers. In addition, some of the pretreated solids were tested in a simultaneous saccharification and fermentation (SSF) process to measure the reactivity of their cellulose component to enzymatic digestion by cellulase enzymes. Monomeric xylose yields of 69–71% and total xylose yields (monomers and oligomers) of 70–77% were achieved with performance level depending on pretreatment severity. Cellulose conversion yields in SSF of 80–87% were obtained for some of the most digestible pretreated solids.


Bioresource Technology | 2003

Availability of corn stover as a sustainable feedstock for bioethanol production.

Kiran L. Kadam; James D. McMillan

The amount of corn stover that can be sustainably collected is estimated to be 80-100 million dry tonnes/yr (t/yr), a majority of which would be available to ethanol plants in the near term as only a small portion is currently used for other applications. Potential long-term demand for corn stover by non-fermentative applications in the United States is estimated to be about 20 million dry t/yr, assuming that corn stover-based products replace 50% of both hardwood pulp and wood-based particleboard, and that 50% of all furfural production is from corncobs. Hence, 60-80 million dry t/yr of corn stover should be available to fermentative routes. To achieve an ethanol production potential of 11 billion L (3 billion gal) per year (a target level for a non-niche feedstock), about 40% of the harvestable corn stover is needed. This amount should be available as long as the diversion of corn stover to non-ethanol fermentative products remains limited.


Bioresource Technology | 2008

Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose.

David B. Hodge; M. Nazmul Karim; Daniel J. Schell; James D. McMillan

The rates and extents of enzymatic cellulose hydrolysis of dilute acid pretreated corn stover (PCS) decline with increasing slurry concentration. However, mass transfer limitations are not apparent until insoluble solids concentrations approach 20% w/w, indicating that inhibition of enzyme hydrolysis at lower solids concentrations is primarily due to soluble components. Consequently, the inhibitory effects of pH-adjusted pretreatment liquor on the enzymatic hydrolysis of PCS were investigated. A response surface methodology (RSM) was applied to empirically model how hydrolysis performance varied as a function of enzyme loading (12-40 mg protein/g cellulose) and insoluble solids concentration (5-13%) in full-slurry hydrolyzates. Factorial design and analysis of variance (ANOVA) were also used to assess the contribution of the major classes of soluble components (acetic acid, phenolics, furans, sugars) to total inhibition. High sugar concentrations (130 g/L total initial background sugars) were shown to be the primary cause of performance inhibition, with acetic acid (15 g/L) only slightly inhibiting enzymatic hydrolysis and phenolic compounds (9 g/L total including vanillin, syringaldehyde, and 4-hydroxycinnamic acid) and furans (8 g/L total of furfural and hydroxymethylfurfural, HMF) with only a minor effect on reaction kinetics. It was also demonstrated that this enzyme inhibition in high-solids PCS slurries can be approximated using a synthetic hydrolyzate composed of pure sugars supplemented with a mixture of acetic acid, furans, and phenolic compounds, which indicates that generally all of the reaction rate-determining soluble compounds for this system can be approximated synthetically.


Biotechnology Progress | 2004

Development and Validation of a Kinetic Model for Enzymatic Saccharification of Lignocellulosic Biomass

Kiran L. Kadam; Eric C. Rydholm; James D. McMillan

A multireaction kinetic model was developed for closed‐system enzymatic hydrolysis of lignocellulosic biomass such as corn stover. Three hydrolysis reactions were modeled, two heterogeneous reactions for cellulose breakdown to cellobiose and glucose and one homogeneous reaction for hydrolyzing cellobiose to glucose. Cellulase adsorption onto pretreated lignocellulose was modeled via a Langmuir‐type isotherm. The sugar products of cellulose hydrolysis, cellobiose and glucose, as well as xylose, the dominant sugar prevalent in most hemicellulose hydrolyzates, were assumed to competitively inhibit the enzymatic hydrolysis reactions. Model parameters were estimated from experimental data generated using dilute acid pretreated corn stover as the substrate. The model performed well in predicting cellulose hydrolysis trends at experimental conditions both inside and outside the design space used for parameter estimation and can be used for in silico process optimization.


Biotechnology and Bioengineering | 2009

Comparative study of corn stover pretreated by dilute acid and cellulose solvent‐based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility

Zhiguang Zhu; Noppadon Sathitsuksanoh; Todd B. Vinzant; Daniel J. Schell; James D. McMillan; Y.-H. Percival Zhang

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF‐pretreated corn stover but reached only ∼60% for the DA‐pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non‐cellulose accessibility to cellulase (NCAC) based on adsorption of a non‐hydrolytic recombinant protein TGC were measured for the first time. The COSLIF‐pretreated corn stover had a CAC of 11.57 m2/g, nearly twice that of the DA‐pretreated biomass (5.89 m2/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA‐ and COSLIF‐pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility. Biotechnol. Bioeng. 2009;103: 715–724.


Applied Biochemistry and Biotechnology | 2003

Dilute-Sulfuric Acid Pretreatment of Corn Stover in Pilot-Scale Reactor

Daniel J. Schell; Jody Farmer; Millie Newman; James D. McMillan

Corn stover is a domestic feedstock that has potential to produce significant quantities of fuel ethanol and other bioenergy and biobased products. However, comprehensive yield and carbon mass balance information and validated kinetic models for dilute-sulfuric acid (H2SO4) pretreatment of corn stover have not been available. This has hindered the estimation of process economics and also limited the ability to perform technoeconomic modeling to guide research. To better characterize pretreatment and assess its kinetics, we pretreated corn stover in a continuous 1 t/d reactor. Corn stover was pretreated at 20% (w/w) solids concentration over a range of conditions encompassing residence times of 3-12 min, temperatures of 165- 195 degrees C, and H2SO4 concentrations of 0.5-1.4% (w/w). Xylan conversion yield and carbon mass balance data were collected at each run condition. Performance results were used to estimate kinetic model parameters assuming biphasic hemicellulose hydrolysis and a hydrolysis mechanism incorporating formation of intermediate xylo-oligomers. In addition, some of the pretreated solids were tested in a simultaneous saccharification and fermentation (SSF) process to measure the reactivity of their cellulose component to enzymatic digestion by cellulase enzymes. Monomeric xylose yields of 69-71% and total xylose yields (monomers and oligomers) of 70-77% were achieved with performance level depending on pretreatment severity. Cellulose conversion yields in SSF of 80-87% were obtained for some of the most digestible pretreated solids.


Applied Biochemistry and Biotechnology | 2009

Model-based fed-batch for high-solids enzymatic cellulose hydrolysis.

David B. Hodge; M. Nazmul Karim; Daniel J. Schell; James D. McMillan

While many kinetic models have been developed for the enzymatic hydrolysis of cellulose, few have been extensively applied for process design, optimization, or control. High-solids operation of the enzymatic hydrolysis of lignocellulose is motivated by both its operation decreasing capital costs and increasing product concentration and hence separation costs. This work utilizes both insights obtained from experimental work and kinetic modeling to develop an optimization strategy for cellulose saccharification at insoluble solids levels greater than 15% (w/w), where mixing in stirred tank reactors (STRs) becomes problematic. A previously developed model for batch enzymatic hydrolysis of cellulose was modified to consider the effects of feeding in the context of fed-batch operation. By solving the set of model differential equations, a feeding profile was developed to maintain the insoluble solids concentration at a constant or manageable level throughout the course of the reaction. Using this approach, a stream of relatively concentrated solids (and cellulase enzymes) can be used to increase the final sugar concentration within the reactor without requiring the high initial levels of insoluble solids that would be required if the operation were performed in batch mode. Experimental application in bench-scale STRs using a feed stream of dilute acid-pretreated corn stover solids and cellulase enzymes resulted in similar cellulose conversion profiles to those achieved in batch shake-flask reactors where temperature control issues are mitigated. Final cellulose conversions reached approximately 80% of theoretical for fed-batch STRs fed to reach a cumulative solids level of 25% (w/w) initial insoluble solids.


Renewable Energy | 1997

Bioethanol production: Status and prospects

James D. McMillan

Production of fuel ethanol from renewable lignocellulosic materials (“bioethanol”) has the potential to reduce burgeoning world dependence on petroleum while decreasing net emissions of carbon dioxide, the principal greenhouse gas. This paper reviews the benefits and status of bioethanol production technology, focusing mostly on recent developments in the United States of America. The composition of representative lignocellulosic biomass species is presented and processing options under investigation are described. Discussion of current research directions highlights recent breakthroughs that significantly improve the prospects for commercialization. The pace of recent developments suggests that large-scale bioethanol production facilities will come on line in the United States within the next several years.


Bioresource Technology | 2009

Rheology of Corn Stover Slurries at High Solids Concentrations - Effects of Saccharification and Particle Size

Sridhar Viamajala; James D. McMillan; Daniel J. Schell; Richard T. Elander

The rheological characteristics of untreated and dilute acid pretreated corn stover (CS) slurries at high solids concentrations were studied under continuous shear using plate-plate type measurements. Slurry rheological behavior was examined as a function of insoluble solids concentration (10-40%), extent of pretreatment (0-75% removal of xylan) and particle size (-20 and -80 mesh). Results show that CS slurries exhibit shear-thinning behavior describable using a Casson model. Further, results demonstrate that the apparent viscosity and yield stress increase with increasing solids concentration (which corresponds to a decrease in free water). Dilute acid pretreatment leads to lower viscosity and yield stresses at equivalent solids concentrations, as does smaller particle size. Taken together, these findings are consistent with the hypothesis that the availability of free water in the slurry plays a significant role in determining its rheological behavior. In particular, as the free water content of the slurry decreases, e.g., with increasing solids concentration, the greater interaction among particles likely increases the apparent viscosity and yield stress properties of the slurry. The results also suggest that the availability of free water, and thereby slurry rheological properties, depend on the chemical composition of the corn stover as well as its physical characteristics such as particle size and porosity. Hydrophilic polymers within the cell wall, such as xylan or pectin, or larger pores within bigger particles, facilitate sequestration of water in the solid phase resulting in decreased availability of free water. Thus, dilute acid pretreated slurries, which contain smaller size particles having significantly lower xylan content than slurries of untreated milled stover, exhibit much lower viscosities and yield stresses than untreated slurries containing large particles at similar solid concentrations.

Collaboration


Dive into the James D. McMillan's collaboration.

Top Co-Authors

Avatar

Daniel J. Schell

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ali Mohagheghi

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Arun Tholudur

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian H. Davison

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jenny Hamilton

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

William S. Adney

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Min Zhang

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jody Farmer

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Melvin P. Tucker

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge