James D. Orth
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James D. Orth.
Nature Reviews Molecular Cell Biology | 2004
Roberto Buccione; James D. Orth; Mark A. McNiven
The plasma membrane of many motile cells undergoes highly regulated protrusions and invaginations that support the formation of podosomes, invadopodia and circular dorsal ruffles. Although they are similar in appearance and in their formation — which is mediated by a highly conserved actin–membrane apparatus — these transient surface membrane distortions are distinct. Their function is to help the cell as it migrates, attaches and invades.
Cancer Cell | 2009
Hsiao-Chun Huang; Jue Shi; James D. Orth; Timothy J. Mitchison
Current antimitotics work by perturbing spindle assembly, which activates the spindle assembly checkpoint, causes mitotic arrest, and triggers apoptosis. Cancer cells can resist such killing by premature exit, before cells initiate apoptosis, due to a weak checkpoint or rapid slippage. We reasoned blocking mitotic exit downstream of the checkpoint might circumvent this resistance. Using single-cell approaches, we showed that blocking mitotic exit by Cdc20 knockdown slowed cyclin B1 proteolysis, thus allowed more time for death initiation. Killing by Cdc20 knockdown did not require checkpoint activity and can occur by intrinsic apoptosis or an alternative death pathway when Bcl2 was overexpressed. We conclude targeting Cdc20, or otherwise blocking mitotic exit, may be a better cancer therapeutic strategy than perturbing spindle assembly.
Proceedings of the National Academy of Sciences of the United States of America | 2002
James D. Orth; Eugene W. Krueger; Hong Cao; Mark A. McNiven
The large GTPase dynamin (Dyn2) has been demonstrated by us and others to interact with several different actin-binding proteins. To define how Dyn2 might participate in actin dynamics in livings cells we have expressed green fluorescent protein (GFP)-tagged Dyn2 in cultured cells and observed labeling of comet-like vesicles and macropinosomes. The comet structures progressed with a constant velocity and were reminiscent of actin comets associated with motile vesicles in cells expressing type I phosphatidylinositol phosphate 5-kinases. Based on these observations we sought to determine whether Dyn2 is an integral component of actin comets. Cells expressing type I phosphatidylinositol phosphate 5-kinase and Dyn2-GFP revealed a prominent colocalization of Dyn2 and actin in comet structures. Interestingly, comet formation and motility were normal in cells expressing wild-type Dyn2-GFP but altered markedly in Dyn2 mutant-expressing cells. Dyn2K44A-GFP mutant cells displayed a significant reduction in comet number, length, velocity, and efficiency of movement. In contrast, comets in cells expressing Dyn2ΔPRD-GFP appeared dark and did not incorporate the mutant Dyn2 protein, indicating that the proline-rich domain (PRD) is required for Dyn2 recruitment. Further, these comets were significantly longer and slower than those in control cells. These findings demonstrate a role for Dyn2 in actin-based vesicle motility.
Molecular and Cellular Biology | 2003
Hong Cao; James D. Orth; Jing Chen; Shaun G. Weller; John E. Heuser; Mark A. McNiven
ABSTRACT The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of the endocytic machinery suggests that cortactin may participate in one or several endocytic processes. Therefore, the goal of this study was to test whether cortactin associates with clathrin-coated pits and participates in receptor-mediated endocytosis. Morphological experiments with either anti-cortactin antibodies or expressed red fluorescence protein-tagged cortactin revealed a striking colocalization of cortactin and clathrin puncta at the ventral plasma membrane. Consistent with these observations, cells microinjected with these antibodies exhibited a marked decrease in the uptake of labeled transferrin and low-density lipoprotein while internalization of the fluid marker dextran was unchanged. Cells expressing the cortactin Src homology three domain also exhibited markedly reduced endocytosis. These findings suggest that cortactin is an important component of the receptor-mediated endocytic machinery, where, together with actin and dynamin, it regulates the scission of clathrin pits from the plasma membrane. Thus, cortactin provides a direct link between the dynamic actin cytoskeleton and the membrane pinchase dynamin that supports vesicle formation during receptor-mediated endocytosis.
Cancer Research | 2008
Jue Shi; James D. Orth; Timothy J. Mitchison
To improve cancer chemotherapy, we need to understand the mechanisms that determine drug sensitivity in cancer and normal cells. Here, we investigate this question across a panel of 11 cell lines at a phenotypic and molecular level for three antimitotic drugs: paclitaxel, nocodazole, and an inhibitor of kinesin-5 (also known as KSP, Eg5, Kif11). Using automated microscopy with markers for mitosis and apoptosis (high content screening), we find that the mitotic arrest response shows relatively little variation between cell types, whereas the tendency to undergo apoptosis shows large variation. We found no correlation between levels of mitotic arrest and apoptosis. Apoptosis depended on entry into mitosis and occurred both from within mitosis and after exit. Response to the three drugs strongly correlated, although paclitaxel caused more apoptosis in some cell lines at similar levels of mitotic arrest. Molecular investigations showed that sensitivity to apoptosis correlated with loss of an antiapoptotic protein, XIAP, during the drug response, but not its preresponse levels, and to some extent also correlated with activation of the p38 and c-Jun NH(2) kinase pathways. We conclude that variation in sensitivity to antimitotic drugs in drug-naive cell lines is governed more by differences in apoptotic signaling than by differences in mitotic spindle or spindle assembly checkpoint proteins and that antimitotics with different mechanisms trigger very similar, but not identical, responses.
Nature Cell Biology | 2005
Hong Cao; Shaun G. Weller; James D. Orth; Jing Chen; Bing Huang; Ji-Long Chen; Mark Stamnes; Mark A. McNiven
Cortactin is an actin-binding protein that has recently been implicated in endocytosis. It binds directly to dynamin-2 (Dyn2), a large GTPase that mediates the formation of vesicles from the plasma membrane and the Golgi. Here we show that cortactin associates with the Golgi to regulate the actin- and Dyn2-dependent transport of cargo. Cortactin antibodies stain the Golgi apparatus, labelling peripheral buds and vesicles that are associated with the cisternae. Notably, in vitro or intact-cell experiments show that activation of Arf1 mediates the recruitment of actin, cortactin and Dyn2 to Golgi membranes. Furthermore, selective disruption of the cortactin–Dyn2 interaction significantly reduces the levels of Dyn2 at the Golgi and blocks the transit of nascent proteins from the trans-Golgi network, resulting in swollen and distended cisternae. These findings support the idea of an Arf1-activated recruitment of an actin, cortactin and Dyn2 complex that is essential for Golgi function.
Molecular Biology of the Cell | 2012
James D. Orth; Alexander Loewer; Galit Lahav; Timothy J. Mitchison
ETOC: Despite the use of antimitotic drugs, our understanding of the stress response, especially during mitotic arrest, is lacking. We report a molecular mechanism resulting in DNA damage during mitotic arrest that occurs via the apoptotic machinery but in the absence of cell death; this mechanism triggers p53 induction after cells slip from mitotic arrest.
Cancer Research | 2011
James D. Orth; Rainer H. Kohler; Floris Foijer; Peter K. Sorger; Ralph Weissleder; Timothy J. Mitchison
Cancer relies upon frequent or abnormal cell division, but how the tumor microenvironment affects mitotic processes in vivo remains unclear, largely due to the technical challenges of optical access, spatial resolution, and motion. We developed high-resolution in vivo microscopy methods to visualize mitosis in a murine xenograft model of human cancer. Using these methods, we determined whether the single-cell response to the antimitotic drug paclitaxel (Ptx) was the same in tumors as in cell culture, observed the impact of Ptx on the tumor response as a whole, and evaluated the single-cell pharmacodynamics (PD) of Ptx (by in vivo PD microscopy). Mitotic initiation was generally less frequent in tumors than in cell culture, but subsequently it proceeded normally. Ptx treatment caused spindle assembly defects and mitotic arrest, followed by slippage from mitotic arrest, multinucleation, and apoptosis. Compared with cell culture, the peak mitotic index in tumors exposed to Ptx was lower and the tumor cells survived longer after mitotic arrest, becoming multinucleated rather than dying directly from mitotic arrest. Thus, the tumor microenvironment was much less proapoptotic than cell culture. The morphologies associated with mitotic arrest were dose and time dependent, thereby providing a semiquantitative, single-cell measure of PD. Although many tumor cells did not progress through Ptx-induced mitotic arrest, tumor significantly regressed in the model. Our findings show that in vivo microscopy offers a useful tool to visualize mitosis during tumor progression, drug responses, and cell fate at the single-cell level.
Molecular Cancer Therapeutics | 2008
James D. Orth; Yangzhong Tang; Jade Shi; Clement Loy; Christiane Amendt; Claudia Wilm; Frank Zenke; Timothy J. Mitchison
Kinesin-5 inhibitors (K5I) are promising antimitotic cancer drug candidates. They cause prolonged mitotic arrest and death of cancer cells, but their full range of phenotypic effects in different cell types has been unclear. Using time-lapse microscopy of cancer and normal cell lines, we find that a novel K5I causes several different cancer and noncancer cell types to undergo prolonged arrest in monopolar mitosis. Subsequent events, however, differed greatly between cell types. Normal diploid cells mostly slipped from mitosis and arrested in tetraploid G1, with little cell death. Several cancer cell lines died either during mitotic arrest or following slippage. Contrary to prevailing views, mitotic slippage was not required for death, and the duration of mitotic arrest correlated poorly with the probability of death in most cell lines. We also assayed drug reversibility and long-term responses after transient drug exposure in MCF7 breast cancer cells. Although many cells divided after drug washout during mitosis, this treatment resulted in lower survival compared with washout after spontaneous slippage likely due to chromosome segregation errors in the cells that divided. Our analysis shows that K5Is cause cancer-selective cell killing, provides important kinetic information for understanding clinical responses, and elucidates mechanisms of drug sensitivity versus resistance at the level of phenotype. [Mol Cancer Ther 2008;7(11):3480–9]
Infection and Immunity | 2004
Xian Ming Chen; Bing Q. Huang; Patrick L. Splinter; James D. Orth; Daniel D. Billadeau; Mark A. McNiven; Nicholas F. LaRusso
ABSTRACT Cryptosporidium parvum invasion of epithelial cells involves host cell membrane alterations which require a remodeling of the host cell actin cytoskeleton. In addition, an actin plaque, possibly associated with the dense-band region, forms within the host cytoplasm at the host-parasite interface. Here we show that Cdc42 and RhoA, but not Rac1, members of the Rho family of GTPases, are recruited to the host-parasite interface in an in vitro model of human biliary cryptosporidiosis. Interestingly, activation of Cdc42, but not RhoA, was detected in the infected cells. Neural Wiskott-Aldrich syndrome protein (N-WASP) and p34-Arc, actin-regulating downstream effectors of Cdc42, were also recruited to the host-parasite interface. Whereas cellular expression of a constitutively active mutant of Cdc42 promoted C. parvum invasion, overexpression of a dominant negative mutant of Cdc42, or depletion of Cdc42 mRNA by short interfering RNA-mediated gene silencing, inhibited C. parvum invasion. Expression of the WA fragment of N-WASP to block associated actin polymerization also inhibited C. parvum invasion. Moreover, inhibition of host cell Cdc42 activation by dominant negative mutation inhibited C. parvum-associated actin remodeling, membrane protrusion, and dense-band formation. In contrast, treatment of cells with a Rho inhibitor, exoenzyme C3, or cellular overexpression of dominant negative mutants of RhoA and Rac1 had no effect on C. parvum invasion. These data suggest that C. parvum invasion of target epithelia results from the organisms ability to activate a host cell Cdc42 GTPase signaling pathway to induce host cell actin remodeling at the attachment site.