Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark A. McNiven is active.

Publication


Featured researches published by Mark A. McNiven.


Molecular and Cellular Biology | 1999

Caveolins, Liquid-Ordered Domains, and Signal Transduction

Eric J. Smart; Gregory A. Graf; Mark A. McNiven; William C. Sessa; Jeffrey A. Engelman; Philipp E. Scherer; Takashi Okamoto; Michael P. Lisanti

Caveolae were originally identified as flask-shaped invaginations of the plasma membrane in endothelial and epithelial cells (14). Prior to the development of biochemical methods for their purification, caveolae were thought to principally mediate the transcellular movement of molecules (101, 145). Recently, the development of novel purification procedures has greatly expanded our knowledge regarding the putative functions of caveolae in vivo. In this review, we seek to update the working definition of caveolae, describe the functional roles of the caveolin gene family, and summarize the evidence that supports a role for caveolae as mediators of a number of cellular signaling processes.


Molecular and Cellular Biology | 2003

The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1

Yisang Yoon; Eugene W. Krueger; Barbara J. Oswald; Mark A. McNiven

ABSTRACT The yeast protein Fis1p has been shown to participate in mitochondrial fission mediated by the dynamin-related protein Dnm1p. In mammalian cells, the dynamin-like protein DLP1/Drp1 functions as a mitochondrial fission protein, but the mechanisms by which DLP1/Drp1 and the mitochondrial membrane interact during the fission process are undefined. In this study, we have tested the role of a mammalian homologue of Fis1p, hFis1, and provided new and mechanistic information about the control of mitochondrial fission in mammalian cells. Through differential tagging and deletion experiments, we demonstrate that the intact C-terminal structure of hFis1 is essential for mitochondrial localization, whereas the N-terminal region of hFis1 is necessary for mitochondrial fission. Remarkably, an increased level of cellular hFis1 strongly promotes mitochondrial fission, resulting in an accumulation of fragmented mitochondria. Conversely, cell microinjection of hFis1 antibodies or treatment with hFis1 antisense oligonucleotides induces an elongated and collapsed mitochondrial morphology. Further, fluorescence resonance energy transfer and coimmunoprecipitation studies demonstrate that hFis1 interacts with DLP1. These results suggest that hFis1 participates in mitochondrial fission through an interaction that recruits DLP1 from the cytosol. We propose that hFis1 is a limiting factor in mitochondrial fission and that the number of hFis1 molecules on the mitochondrial surface determines fission frequency.


Nature Reviews Molecular Cell Biology | 2004

Foot and mouth: podosomes, invadopodia and circular dorsal ruffles

Roberto Buccione; James D. Orth; Mark A. McNiven

The plasma membrane of many motile cells undergoes highly regulated protrusions and invaginations that support the formation of podosomes, invadopodia and circular dorsal ruffles. Although they are similar in appearance and in their formation — which is mediated by a highly conserved actin–membrane apparatus — these transient surface membrane distortions are distinct. Their function is to help the cell as it migrates, attaches and invades.


Current Opinion in Cell Biology | 1998

Dynamin and its partners: A progress report

Sandra L. Schmid; Mark A. McNiven; Pietro De Camilli

Dynamins role in clathrin-mediated endocytosis is now well established. Here we review new evidence from the past two years for the function of dynamin and related GTPases in other Intracellular trafficking events. We then summarize current information on the domain structure and function of this multidomain GTPase. Finally, we describe dynamin partners and their function in the context of clathrin-mediated endocytosis.


Molecular and Cellular Biology | 2004

Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro

Eugenia Trushina; Roy B. Dyer; John D. Badger; Daren R. Ure; Lars Eide; David D. Tran; Brent T. Vrieze; Valerie Legendre-Guillemin; Peter S. McPherson; Bhaskar S. Mandavilli; Bennett Van Houten; Scott Zeitlin; Mark A. McNiven; Ruedi Aebersold; Michael R. Hayden; Joseph E. Parisi; Erling Seeberg; Ioannis Dragatsis; Kelly Doyle; Anna Bender; Celin Chacko; Cynthia T. McMurray

ABSTRACT Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntingtons disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The large GTPase dynamin regulates actin comet formation and movement in living cells

James D. Orth; Eugene W. Krueger; Hong Cao; Mark A. McNiven

The large GTPase dynamin (Dyn2) has been demonstrated by us and others to interact with several different actin-binding proteins. To define how Dyn2 might participate in actin dynamics in livings cells we have expressed green fluorescent protein (GFP)-tagged Dyn2 in cultured cells and observed labeling of comet-like vesicles and macropinosomes. The comet structures progressed with a constant velocity and were reminiscent of actin comets associated with motile vesicles in cells expressing type I phosphatidylinositol phosphate 5-kinases. Based on these observations we sought to determine whether Dyn2 is an integral component of actin comets. Cells expressing type I phosphatidylinositol phosphate 5-kinase and Dyn2-GFP revealed a prominent colocalization of Dyn2 and actin in comet structures. Interestingly, comet formation and motility were normal in cells expressing wild-type Dyn2-GFP but altered markedly in Dyn2 mutant-expressing cells. Dyn2K44A-GFP mutant cells displayed a significant reduction in comet number, length, velocity, and efficiency of movement. In contrast, comets in cells expressing Dyn2ΔPRD-GFP appeared dark and did not incorporate the mutant Dyn2 protein, indicating that the proline-rich domain (PRD) is required for Dyn2 recruitment. Further, these comets were significantly longer and slower than those in control cells. These findings demonstrate a role for Dyn2 in actin-based vesicle motility.


Molecular and Cellular Biology | 2003

Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis

Hong Cao; James D. Orth; Jing Chen; Shaun G. Weller; John E. Heuser; Mark A. McNiven

ABSTRACT The actin cytoskeleton is believed to contribute to the formation of clathrin-coated pits, although the specific components that connect actin filaments with the endocytic machinery are unclear. Cortactin is an F-actin-associated protein, localizes within membrane ruffles in cultured cells, and is a direct binding partner of the large GTPase dynamin. This direct interaction with a component of the endocytic machinery suggests that cortactin may participate in one or several endocytic processes. Therefore, the goal of this study was to test whether cortactin associates with clathrin-coated pits and participates in receptor-mediated endocytosis. Morphological experiments with either anti-cortactin antibodies or expressed red fluorescence protein-tagged cortactin revealed a striking colocalization of cortactin and clathrin puncta at the ventral plasma membrane. Consistent with these observations, cells microinjected with these antibodies exhibited a marked decrease in the uptake of labeled transferrin and low-density lipoprotein while internalization of the fluid marker dextran was unchanged. Cells expressing the cortactin Src homology three domain also exhibited markedly reduced endocytosis. These findings suggest that cortactin is an important component of the receptor-mediated endocytic machinery, where, together with actin and dynamin, it regulates the scission of clathrin pits from the plasma membrane. Thus, cortactin provides a direct link between the dynamic actin cytoskeleton and the membrane pinchase dynamin that supports vesicle formation during receptor-mediated endocytosis.


Nature Cell Biology | 2004

Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion

Heather M. Thompson; Hong Cao; Jing Chen; Ursula Euteneuer; Mark A. McNiven

Dynamin 2 (Dyn2) is a large GTPase involved in vesicle formation and actin reorganization. In this study, we report a novel role for Dyn2 as a component of the centrosome that is involved in centrosome cohesion. By light microscopy, Dyn2 localized aside centrin and colocalized with γ-tubulin at the centrosome; by immunoelectron microscopy, however, Dyn2 was detected in the pericentriolar material as well as on centrioles. Exogenously expressed green fluorescent protein (GFP)-tagged Dyn2 also localized to the centrosome, whereas glutathione S-transferase (GST)-tagged Dyn2 pulled down a protein complex(es) containing actin, α-tubulin and γ-tubulin from liver homogenate. Furthermore, gel overlay and immunoprecipitation indicated a direct interaction between γ-tubulin and a 219-amino-acid middle domain of Dyn2. Reduction of Dyn2 protein levels with small-interfering RNA (siRNA) resulted in centrosome splitting, whereas microtubule nucleation from centrosomes was not affected, suggesting a role for Dyn2 in centrosome cohesion. Finally, fluorescence recovery after photobleaching (FRAP) analysis of a GFP-tagged Dyn2 middle domain indicated that Dyn2 is a dynamic exchangeable component of the centrosome. These findings suggest a novel function for Dyn2 as a participant in centrosome cohesion.


Nature Immunology | 2005

Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse

Timothy S. Gomez; Michael J. Hamann; Sean McCarney; Doris N. Savoy; Casey M. Lubking; Michael P. Heldebrant; Christine M. Labno; David J. McKean; Mark A. McNiven; Janis K. Burkhardt; Daniel D. Billadeau

Actin reorganization at the immunological synapse is required for the amplification and generation of a functional immune response. Using small interfering RNA, we show here that dynamin 2 (Dyn2), a large GTPase involved in receptor-mediated internalization, did not alter antibody-mediated T cell receptor internalization but considerably affected T cell receptor–stimulated T cell activation by regulating multiple biochemical signaling pathways and the accumulation of F-actin at the immunological synapse. Moreover, Dyn2 interacted directly with the Rho family guanine nucleotide exchange factor Vav1, and this interaction was required for T cell activation. These data identify a functionally important interaction between Dyn2 and Vav1 that regulates actin reorganization and multiple signaling pathways in T lymphocytes.


Nature Cell Biology | 2005

Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport

Hong Cao; Shaun G. Weller; James D. Orth; Jing Chen; Bing Huang; Ji-Long Chen; Mark Stamnes; Mark A. McNiven

Cortactin is an actin-binding protein that has recently been implicated in endocytosis. It binds directly to dynamin-2 (Dyn2), a large GTPase that mediates the formation of vesicles from the plasma membrane and the Golgi. Here we show that cortactin associates with the Golgi to regulate the actin- and Dyn2-dependent transport of cargo. Cortactin antibodies stain the Golgi apparatus, labelling peripheral buds and vesicles that are associated with the cisternae. Notably, in vitro or intact-cell experiments show that activation of Arf1 mediates the recruitment of actin, cortactin and Dyn2 to Golgi membranes. Furthermore, selective disruption of the cortactin–Dyn2 interaction significantly reduces the levels of Dyn2 at the Golgi and blocks the transit of nascent proteins from the trans-Golgi network, resulting in swollen and distended cisternae. These findings support the idea of an Arf1-activated recruitment of an actin, cortactin and Dyn2 complex that is essential for Golgi function.

Collaboration


Dive into the Mark A. McNiven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Casey

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge