Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James E. Brownell is active.

Publication


Featured researches published by James E. Brownell.


Nature | 2009

An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer

Teresa A. Soucy; Peter G. Smith; Michael Milhollen; Allison Berger; James M. Gavin; Sharmila Adhikari; James E. Brownell; Kristin E. Burke; David P. Cardin; Stephen Critchley; Courtney Cullis; Amanda Doucette; James J. Garnsey; Jeffrey L. Gaulin; Rachel E. Gershman; Anna R. Lublinsky; Alice McDonald; Hirotake Mizutani; Usha Narayanan; Edward J. Olhava; Stephane Peluso; Mansoureh Rezaei; Michael D. Sintchak; Tina Talreja; Michael Thomas; Tary Traore; Stepan Vyskocil; Jie Yu; Julie Zhang; Lawrence R. Dick

The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin–proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.


Nature Reviews Drug Discovery | 2011

Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets

Lynn Bedford; James Lowe; Lawrence R. Dick; R. John Mayer; James E. Brownell

The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis. The growing recognition of the fundamental importance of these pathways to normal cell function and in disease has prompted an in-depth search for small-molecule inhibitors that selectively block the function of these pathways. However, our limited understanding of the molecular mechanisms and biological consequences of UBL conjugation is a significant hurdle to identifying drug-like inhibitors of enzyme targets within these pathways. Here, we highlight recent advances in understanding the role of some of these enzymes and how these new insights may be the key to developing novel therapeutics for diseases including immuno-inflammatory disorders, cancer, infectious diseases, cardiovascular disease and neurodegenerative disorders.


Molecular Cell | 2010

Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ.

James E. Brownell; Michael D. Sintchak; James M. Gavin; Hua Liao; Frank J. Bruzzese; Nancy J. Bump; Teresa A. Soucy; Michael Milhollen; Xiaofeng Yang; Anne L. Burkhardt; Jingya Ma; Huay-Keng Loke; Trupti Lingaraj; Dongyun Wu; Kristin B. Hamman; James J. Spelman; Courtney Cullis; Steven P. Langston; Stepan Vyskocil; Todd B. Sells; William D. Mallender; Irache Visiers; Ping Li; Christopher F. Claiborne; Mark Rolfe; Joseph B. Bolen; Lawrence R. Dick

The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.


Genes & Cancer | 2010

The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy.

Teresa A. Soucy; Lawrence R. Dick; Peter G. Smith; Michael Milhollen; James E. Brownell

Cancer cells depend on signals that promote cell cycle progression and prevent programmed cell death that would otherwise result from cumulative, aberrant stress. These activities require the temporally controlled destruction of specific intracellular proteins by the ubiquitin-proteasome system (UPS). To a large extent, the control points in this process include a family of E3 ubiquitin ligases called cullin-RING ligases (CRLs). The ligase activity of these multicomponent complexes requires modification of the cullin protein situated at their core with a ubiquitin-like protein called NEDD8. Neddylation results in conformational rearrangements within the CRL, which are necessary for ubiquitin transfer to a substrate. The NEDD8 pathway thus has a critical role in mediating the ubiquitination of numerous CRL substrate proteins involved in cell cycle progression and survival including the DNA replication licensing factor Cdt-1, the NF-κB transcription factor inhibitor pIκBα, and the cell cycle regulators cyclin E and p27. The initial step required for attachment of NEDD8 to a cullin is catalyzed by the E1, NEDD8-activating enzyme (NAE). The first-in-class inhibitor of NAE, MLN4924, has been shown to block the activity of NAE and prevent the subsequent neddylation of cullins. Preclinical studies have demonstrated antitumor activity in various solid tumors and hematological malignancies, and preliminary clinical data have shown the anticipated pharmacodynamic effects in humans. Here, we review the NEDD8 pathway, its importance in cancer, and the therapeutic potential of NAE inhibition.


Cancer Cell | 2012

Treatment-Emergent Mutations in NAEβ Confer Resistance to the NEDD8-Activating Enzyme Inhibitor MLN4924

Michael Milhollen; Michael Thomas; Usha Narayanan; Tary Traore; Jessica Riceberg; Benjamin S. Amidon; Neil Bence; Joseph B. Bolen; James E. Brownell; Lawrence R. Dick; Huay-Keng Loke; Alice McDonald; Jingya Ma; Mark Manfredi; Todd B. Sells; Xiaofeng Yang; Qing Xu; Erik Koenig; James M. Gavin; Peter G. Smith

MLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE) in clinical trials for the treatment of cancer. MLN4924 is a mechanism-based inhibitor, with enzyme inhibition occurring through the formation of a tight-binding NEDD8-MLN4924 adduct. In cell and xenograft models of cancer, we identified treatment-emergent heterozygous mutations in the adenosine triphosphate binding pocket and NEDD8-binding cleft of NAEβ as the primary mechanism of resistance to MLN4924. Biochemical analyses of NAEβ mutants revealed slower rates of adduct formation and reduced adduct affinity for the mutant enzymes. A compound with tighter binding properties was able to potently inhibit mutant enzymes in cells. These data provide rationales for patient selection and the development of next-generation NAE inhibitors designed to overcome treatment-emergent NAEβ mutations.


Journal of Biological Chemistry | 2011

Mechanistic Studies of Substrate-assisted Inhibition of Ubiquitin-activating Enzyme by Adenosine Sulfamate Analogues

Jesse J. Chen; Christopher Tsu; James M. Gavin; Michael Milhollen; Frank J. Bruzzese; William D. Mallender; Michael D. Sintchak; Nancy J. Bump; Xiaofeng Yang; Jingya Ma; Huay-Keng Loke; Qing Xu; Ping Li; Neil F. Bence; James E. Brownell; Lawrence R. Dick

Ubiquitin-activating enzyme (UAE or E1) activates ubiquitin via an adenylate intermediate and catalyzes its transfer to a ubiquitin-conjugating enzyme (E2). MLN4924 is an adenosine sulfamate analogue that was identified as a selective, mechanism-based inhibitor of NEDD8-activating enzyme (NAE), another E1 enzyme, by forming a NEDD8-MLN4924 adduct that tightly binds at the active site of NAE, a novel mechanism termed substrate-assisted inhibition (Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., Soucy, T. A., Milhollen, M. A., Yang, X., Burkhardt, A. L., Ma, J., Loke, H. K., Lingaraj, T., Wu, D., Hamman, K. B., Spelman, J. J., Cullis, C. A., Langston, S. P., Vyskocil, S., Sells, T. B., Mallender, W. D., Visiers, I., Li, P., Claiborne, C. F., Rolfe, M., Bolen, J. B., and Dick, L. R. (2010) Mol. Cell 37, 102–111). In the present study, substrate-assisted inhibition of human UAE (Ube1) by another adenosine sulfamate analogue, 5′-O-sulfamoyl-N6-[(1S)-2,3-dihydro-1H-inden-1-yl]-adenosine (Compound I), a nonselective E1 inhibitor, was characterized. Compound I inhibited UAE-dependent ATP-PPi exchange activity, caused loss of UAE thioester, and inhibited E1-E2 transthiolation in a dose-dependent manner. Mechanistic studies on Compound I and its purified ubiquitin adduct demonstrate that the proposed substrate-assisted inhibition via covalent adduct formation is entirely consistent with the three-step ubiquitin activation process and that the adduct is formed via nucleophilic attack of UAE thioester by the sulfamate group of Compound I after completion of step 2. Kinetic and affinity analysis of Compound I, MLN4924, and their purified ubiquitin adducts suggest that both the rate of adduct formation and the affinity between the adduct and E1 contribute to the overall potency. Because all E1s are thought to use a similar mechanism to activate their cognate ubiquitin-like proteins, the substrate-assisted inhibition by adenosine sulfamate analogues represents a promising strategy to develop potent and selective E1 inhibitors that can modulate diverse biological pathways.


Journal of Biological Chemistry | 2012

Mechanistic Studies on Activation of Ubiquitin and Di-ubiquitin-like Protein, FAT10, by Ubiquitin-like Modifier Activating Enzyme 6, Uba6

James M. Gavin; Jesse J. Chen; Hua Liao; Neil Rollins; Xiaofeng Yang; Qing Xu; Jingya Ma; Huay-Keng Loke; Trupti Lingaraj; James E. Brownell; William D. Mallender; Alexandra E. Gould; Benjamin S. Amidon; Lawrence R. Dick

Background: The Uba6 pathway and its components play an important role in a variety of biological processes. Results: The mechanism of how Uba6 activates two distinct substrates, ubiquitin and FAT10, was characterized. Conclusion: Uba6 was shown to use a similar mechanism for activating both substrates with a greater affinity for FAT10. Significance: Relative levels of ubiquitin and FAT10 could regulate the Uba6 pathway in cells. Uba6 is a homolog of the ubiquitin-activating enzyme, Uba1, and activates two ubiquitin-like proteins (UBLs), ubiquitin and FAT10. In this study, biochemical and biophysical experiments were performed to understand the mechanisms of how Uba6 recognizes two distinct UBLs and catalyzes their activation and transfer. Uba6 is shown to undergo a three-step activation process and form a ternary complex with both UBLs, similar to what has been observed for Uba1. The catalytic mechanism of Uba6 is further supported by inhibition studies using a mechanism-based E1 inhibitor, Compound 1, which forms covalent adducts with both ubiquitin and FAT10. In addition, pre-steady state kinetic analysis revealed that the rates of UBL-adenylate (step 1) and thioester (step 2) formation are similar between ubiquitin and FAT10. However, distinct kinetic behaviors were also observed for ubiquitin and FAT10. FAT10 binds Uba6 with much higher affinity than ubiquitin while demonstrating lower catalytic activity in both ATP-PPi exchange and E1-E2 transthiolation assays. Also, Compound 1 is less potent with FAT10 as the UBL compared with ubiquitin in ATP-PPi exchange assays, and both a slow rate of covalent adduct formation and weak adduct binding to Uba6 contribute to the diminished potency observed for FAT10. Together with expression level analysis in IM-9 cells, this study sheds light on the potential role of cytokine-induced FAT10 expression in regulating Uba6 pathways.


Cell Biochemistry and Biophysics | 2013

Absolute Quantification of E1, Ubiquitin-Like Proteins and Nedd8–MLN4924 Adduct by Mass Spectrometry

Xiaofeng Yang; James E. Brownell; Qing Xu; Fengying Zhu; Jingya Ma; Huay-Keng Loke; Neil Rollins; Teresa A. Soucy; James Minissale; Michael Thomas; William D. Mallender; Lawrence R. Dick; Ping Li; Hua Liao

Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins regulate a variety of important cellular processes by forming covalent conjugates with target proteins or lipids. Ubl conjugation is catalyzed by a cascade of proteins including activating enzymes (E1), conjugating enzymes (E2), and in many cases ligation enzymes (E3). The discovery of MLN4924 (Brownell et al., Mol Cell 37: 102–111, 1), an investigational small molecule that is a mechanism-based inhibitor of NEDD8-activating enzyme (NAE), reveals a promising strategy of targeting E1/Ubl pathway for therapeutic purposes. In order to better understand, the biochemical dynamics of Ubl conjugation in cells and tissues, we have developed a mass spectrometry-based method to quantify E1 and Ubls using isotope-labeled proteins as internal standards. Furthermore, we have used the described method to quantify levels of the covalent Nedd8-inhibitor adduct formed in MLN4924 treated cells and tissues. The Nedd8–MLN4924 adduct is a tight-binding inhibitor of NAE, and its cellular concentration represents an indirect pharmacodynamic readout of NAE/Nedd8 pathway inhibition.


Methods of Molecular Biology | 2012

Identification and Application of NEDD8 E1 Inhibitors

Frank J. Bruzzese; Michael Milhollen; James M. Gavin; Helen R. Josephine; James E. Brownell

The NEDD8 conjugation pathway is initiated by the NEDD8 E1, also known as NEDD8 activating enzyme (NAE) or APPBP1/UBA3 (Gong, Yeh. J Biol Chem 274:12063-12042, 1999). The best described biological role for NEDD8 conjugation is to regulate the activity of the cullin RING ligase (CRL) family of ubiquitin E3 ligases (Gong, Yeh. J Biol Chem 274:12063-12042, 1999). In this way, the NEDD8 pathway regulates the turnover of a subset of ubiquitin proteasome system (UPS) substrates that are essential for cancer cell growth and survival (Soucy, Smith, Milhollen. Nature 458:732-737, 2009). We recently initiated clinical trials with a first-in-class small molecule inhibitor of NAE for the treatment of cancer (Soucy, Smith, Milhollen. Nature 458:732-737, 2009). Here we describe a biochemical and cell-based assay used to identify NAE inhibitors and monitor inhibition of the NEDD8 conjugation pathway.


Molecular Cancer Therapeutics | 2011

Abstract C82: Identification and preclinical characterization of inhibitors of the ubiquitin-activating enzymes UBA1 and UBA6.

Neil Bence; Paul Fleming; Jeff Ciavarri; Michael Milhollen; Sai M Pulukuri; Marc Hyer; Tary Traore; Jessica Huck; Derek Tou; Darshan S. Sappal; Kara Hoar; James M. Gavin; Yu Yang; James E. Brownell; Peter G. Smith; Lawrence Dick; Petter Veiby; Mark Manfredi; Christopher F. Claiborne

Millennium Pharmaceuticals, Inc. is dedicated to the discovery and development of novel oncology therapeutics in the area of protein homeostasis. Here we report the identification and characterization of compounds that target the ubiquitin activating enzymes, UBA1 and UBA6. These compounds are mechanism based inhibitors that inactivate the ubiquitin E1 enzymes by forming a ubiquitin compound adduct that remains tightly associated with the E1 adenylate binding site. Treatment of cells with these inhibitors results in cellular effects consistent with known Uba1 biology including rapid loss of E2 ubiquitin thioesters, loss of total ubiquitin conjugates, and accumulation of many ubiquitin proteasome system substrates. Following prolonged treatment, cells primarily arrest in the G2 phase of the cell cycle and ultimately undergo apoptosis. Reflecting the extensive cellular roles of ubiquitin, the compounds also impact global protein turnover, ER stress and DNA damage repair. UBA1 inhibition impairs ubiquitination of PCNA and the Fanconia Anemia protein FANCD2 leading to defective repair of UV induced DNA damage. UBA1 inhibition impacts numerous biological pathways relevant to cancer, results in apoptosis in vitro and is capable of inhibiting tumor growth in mouse xenografts in vivo. These data implicate UBA1 as a target for the treatment of cancer. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2011 Nov 12-16; San Francisco, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2011;10(11 Suppl):Abstract nr C82.

Collaboration


Dive into the James E. Brownell's collaboration.

Top Co-Authors

Avatar

James M. Gavin

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Michael Milhollen

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Lawrence R. Dick

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Peter G. Smith

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Huay-Keng Loke

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Jingya Ma

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Michael Thomas

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Tary Traore

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Yang

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Erik Koenig

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge