Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence R. Dick is active.

Publication


Featured researches published by Lawrence R. Dick.


Nature | 2009

An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer

Teresa A. Soucy; Peter G. Smith; Michael Milhollen; Allison Berger; James M. Gavin; Sharmila Adhikari; James E. Brownell; Kristin E. Burke; David P. Cardin; Stephen Critchley; Courtney Cullis; Amanda Doucette; James J. Garnsey; Jeffrey L. Gaulin; Rachel E. Gershman; Anna R. Lublinsky; Alice McDonald; Hirotake Mizutani; Usha Narayanan; Edward J. Olhava; Stephane Peluso; Mansoureh Rezaei; Michael D. Sintchak; Tina Talreja; Michael Thomas; Tary Traore; Stepan Vyskocil; Jie Yu; Julie Zhang; Lawrence R. Dick

The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin–proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.


Nature Reviews Drug Discovery | 2011

Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets

Lynn Bedford; James Lowe; Lawrence R. Dick; R. John Mayer; James E. Brownell

The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis. The growing recognition of the fundamental importance of these pathways to normal cell function and in disease has prompted an in-depth search for small-molecule inhibitors that selectively block the function of these pathways. However, our limited understanding of the molecular mechanisms and biological consequences of UBL conjugation is a significant hurdle to identifying drug-like inhibitors of enzyme targets within these pathways. Here, we highlight recent advances in understanding the role of some of these enzymes and how these new insights may be the key to developing novel therapeutics for diseases including immuno-inflammatory disorders, cancer, infectious diseases, cardiovascular disease and neurodegenerative disorders.


Molecular Cell | 2010

Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ.

James E. Brownell; Michael D. Sintchak; James M. Gavin; Hua Liao; Frank J. Bruzzese; Nancy J. Bump; Teresa A. Soucy; Michael Milhollen; Xiaofeng Yang; Anne L. Burkhardt; Jingya Ma; Huay-Keng Loke; Trupti Lingaraj; Dongyun Wu; Kristin B. Hamman; James J. Spelman; Courtney Cullis; Steven P. Langston; Stepan Vyskocil; Todd B. Sells; William D. Mallender; Irache Visiers; Ping Li; Christopher F. Claiborne; Mark Rolfe; Joseph B. Bolen; Lawrence R. Dick

The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.


Blood | 2010

MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-κB–dependent lymphoma

Michael Milhollen; Tary Traore; Jennifer Adams-Duffy; Michael P. Thomas; Allison J. Berger; Lenny Dang; Lawrence R. Dick; James J. Garnsey; Erik Koenig; Steven P. Langston; Mark Manfredi; Usha Narayanan; Mark Rolfe; Louis M. Staudt; Teresa A. Soucy; Jie Yu; Julie Zhang; Joseph B. Bolen; Peter G. Smith

MLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action. Treatment of ABC DLBCL cells with MLN4924 resulted in rapid accumulation of pIkappaBalpha, decrease in nuclear p65 content, reduction of nuclear factor-kappaB (NF-kappaB) transcriptional activity, and G(1) arrest, ultimately resulting in apoptosis induction, events consistent with potent NF-kappaB pathway inhibition. Treatment of germinal-center B cell-like (GCB) DLBCL cells resulted in an increase in cellular Cdt-1 and accumulation of cells in S-phase, consistent with cells undergoing DNA rereplication. In vivo administration of MLN4924 to mice bearing human xenograft tumors of ABC- and GCB-DLBCL blocked NAE pathway biomarkers and resulted in complete tumor growth inhibition. In primary human tumor models of ABC-DLBCL, MLN4924 treatment resulted in NF-kappaB pathway inhibition accompanied by tumor regressions. This work describes a novel mechanism of targeted NF-kappaB pathway modulation in DLBCL and provides strong rationale for clinical development of MLN4924 against NF-kappaB-dependent lymphomas.


Drug Discovery Today | 2010

Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy.

Lawrence R. Dick; Paul E. Fleming

Inhibition of the proteasome (a highly abundant enzymatic complex responsible for intracellular protein turnover) is an effective anti-cancer therapeutic approach, as demonstrated by the first-in-class agent bortezomib. Various new proteasome inhibitors are now in development, including peptide boronic acid analogs MLN9708 and CEP-18770, peptide epoxyketones carfilzomib and PR-047, and NPI-0052, a beta-lactone compound. All are potent inhibitors of proteasome activity in vitro but show differences in enzyme binding kinetics, which might affect their pharmacology and result in different efficacy and safety profiles. Here, we review the second-generation proteasome inhibitors and assess the potential pharmacologic impact of their different chemical properties.


Genes & Cancer | 2010

The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy.

Teresa A. Soucy; Lawrence R. Dick; Peter G. Smith; Michael Milhollen; James E. Brownell

Cancer cells depend on signals that promote cell cycle progression and prevent programmed cell death that would otherwise result from cumulative, aberrant stress. These activities require the temporally controlled destruction of specific intracellular proteins by the ubiquitin-proteasome system (UPS). To a large extent, the control points in this process include a family of E3 ubiquitin ligases called cullin-RING ligases (CRLs). The ligase activity of these multicomponent complexes requires modification of the cullin protein situated at their core with a ubiquitin-like protein called NEDD8. Neddylation results in conformational rearrangements within the CRL, which are necessary for ubiquitin transfer to a substrate. The NEDD8 pathway thus has a critical role in mediating the ubiquitination of numerous CRL substrate proteins involved in cell cycle progression and survival including the DNA replication licensing factor Cdt-1, the NF-κB transcription factor inhibitor pIκBα, and the cell cycle regulators cyclin E and p27. The initial step required for attachment of NEDD8 to a cullin is catalyzed by the E1, NEDD8-activating enzyme (NAE). The first-in-class inhibitor of NAE, MLN4924, has been shown to block the activity of NAE and prevent the subsequent neddylation of cullins. Preclinical studies have demonstrated antitumor activity in various solid tumors and hematological malignancies, and preliminary clinical data have shown the anticipated pharmacodynamic effects in humans. Here, we review the NEDD8 pathway, its importance in cancer, and the therapeutic potential of NAE inhibition.


Biochemical Journal | 2010

Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S β5-subunit

Christopher Blackburn; Kenneth M. Gigstad; Paul Hales; Khristofer Garcia; Marc D. Jones; Frank J. Bruzzese; Cynthia Barrett; Jane X. Liu; Teresa A. Soucy; Darshan S. Sappal; Nancy J. Bump; Edward J. Olhava; Paul Fleming; Lawrence R. Dick; Christopher Tsu; Jonathan L. Blank

The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome used on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin–proteasome system in cells. We show that these compounds are entirely selective for the β5 (chymotrypsin-like) site over the β1 (caspase-like) and β2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC50 values for the human 20S β5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin–luciferase reporter, activation of NFκB (nuclear factor κB) in response to TNF-α (tumour necrosis factor-α) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the β5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the β5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome based [corrected] on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin-proteasome system in cells. We show that these compounds are entirely selective for the beta5 (chymotrypsin-like) site over the beta1 (caspase-like) and beta2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC50 values for the human 20S beta5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin-luciferase reporter, activation of NFkappaB (nuclear factor kappaB) in response to TNF-alpha (tumour necrosis factor-alpha) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the beta5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the beta5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.


Molecular Cancer Therapeutics | 2006

Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib

Mark J. Williamson; Jonathan L. Blank; Frank J. Bruzzese; Yueying Cao; J. Scott Daniels; Lawrence R. Dick; Jason N. LaButti; Anne Marie Mazzola; Ashok D. Patil; Corinne L. Reimer; Marjorie S. Solomon; Matthew Stirling; Yuan Tian; Christopher Tsu; Julie X. Zhang; Mark Rolfe

Strains within the genus Salinospora have been shown to produce complex natural products having antibiotic and antiproliferative activities. The biochemical basis for the cytotoxic effects of salinosporamide A has been linked to its ability to inhibit the proteasome. Synthetically accessible salinosporamide A (ML858) was used to determine its biochemical and biological activities and to compare its effects with those of bortezomib. ML858 and bortezomib show time- and concentration-dependent inhibition of the proteasome in vitro. However, unlike bortezomib, which is a reversible inhibitor, ML858 covalently binds to the proteasome, resulting in the irreversible inhibition of 20S proteasome activity. ML858 was equipotent to bortezomib in cell-based reporter stabilization assays, but due to intramolecular instability is less potent in long-term assays. ML858 failed to maintain levels of proteasome inhibition necessary to achieve efficacy in tumor models responsive to bortezomib. Our results show that ML858 and bortezomib exhibit different kinetic and pharmacologic profiles and suggest that additional characterization of ML858 is warranted before its therapeutic potential can be fully appreciated. [Mol Cancer Ther 2006;5(12):3052–61]


Cancer Cell | 2012

Treatment-Emergent Mutations in NAEβ Confer Resistance to the NEDD8-Activating Enzyme Inhibitor MLN4924

Michael Milhollen; Michael Thomas; Usha Narayanan; Tary Traore; Jessica Riceberg; Benjamin S. Amidon; Neil Bence; Joseph B. Bolen; James E. Brownell; Lawrence R. Dick; Huay-Keng Loke; Alice McDonald; Jingya Ma; Mark Manfredi; Todd B. Sells; Xiaofeng Yang; Qing Xu; Erik Koenig; James M. Gavin; Peter G. Smith

MLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE) in clinical trials for the treatment of cancer. MLN4924 is a mechanism-based inhibitor, with enzyme inhibition occurring through the formation of a tight-binding NEDD8-MLN4924 adduct. In cell and xenograft models of cancer, we identified treatment-emergent heterozygous mutations in the adenosine triphosphate binding pocket and NEDD8-binding cleft of NAEβ as the primary mechanism of resistance to MLN4924. Biochemical analyses of NAEβ mutants revealed slower rates of adduct formation and reduced adduct affinity for the mutant enzymes. A compound with tighter binding properties was able to potently inhibit mutant enzymes in cells. These data provide rationales for patient selection and the development of next-generation NAE inhibitors designed to overcome treatment-emergent NAEβ mutations.


Journal of Biological Chemistry | 2011

Mechanistic Studies of Substrate-assisted Inhibition of Ubiquitin-activating Enzyme by Adenosine Sulfamate Analogues

Jesse J. Chen; Christopher Tsu; James M. Gavin; Michael Milhollen; Frank J. Bruzzese; William D. Mallender; Michael D. Sintchak; Nancy J. Bump; Xiaofeng Yang; Jingya Ma; Huay-Keng Loke; Qing Xu; Ping Li; Neil F. Bence; James E. Brownell; Lawrence R. Dick

Ubiquitin-activating enzyme (UAE or E1) activates ubiquitin via an adenylate intermediate and catalyzes its transfer to a ubiquitin-conjugating enzyme (E2). MLN4924 is an adenosine sulfamate analogue that was identified as a selective, mechanism-based inhibitor of NEDD8-activating enzyme (NAE), another E1 enzyme, by forming a NEDD8-MLN4924 adduct that tightly binds at the active site of NAE, a novel mechanism termed substrate-assisted inhibition (Brownell, J. E., Sintchak, M. D., Gavin, J. M., Liao, H., Bruzzese, F. J., Bump, N. J., Soucy, T. A., Milhollen, M. A., Yang, X., Burkhardt, A. L., Ma, J., Loke, H. K., Lingaraj, T., Wu, D., Hamman, K. B., Spelman, J. J., Cullis, C. A., Langston, S. P., Vyskocil, S., Sells, T. B., Mallender, W. D., Visiers, I., Li, P., Claiborne, C. F., Rolfe, M., Bolen, J. B., and Dick, L. R. (2010) Mol. Cell 37, 102–111). In the present study, substrate-assisted inhibition of human UAE (Ube1) by another adenosine sulfamate analogue, 5′-O-sulfamoyl-N6-[(1S)-2,3-dihydro-1H-inden-1-yl]-adenosine (Compound I), a nonselective E1 inhibitor, was characterized. Compound I inhibited UAE-dependent ATP-PPi exchange activity, caused loss of UAE thioester, and inhibited E1-E2 transthiolation in a dose-dependent manner. Mechanistic studies on Compound I and its purified ubiquitin adduct demonstrate that the proposed substrate-assisted inhibition via covalent adduct formation is entirely consistent with the three-step ubiquitin activation process and that the adduct is formed via nucleophilic attack of UAE thioester by the sulfamate group of Compound I after completion of step 2. Kinetic and affinity analysis of Compound I, MLN4924, and their purified ubiquitin adducts suggest that both the rate of adduct formation and the affinity between the adduct and E1 contribute to the overall potency. Because all E1s are thought to use a similar mechanism to activate their cognate ubiquitin-like proteins, the substrate-assisted inhibition by adenosine sulfamate analogues represents a promising strategy to develop potent and selective E1 inhibitors that can modulate diverse biological pathways.

Collaboration


Dive into the Lawrence R. Dick's collaboration.

Top Co-Authors

Avatar

James E. Brownell

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Frank J. Bruzzese

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Michael Milhollen

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Teresa A. Soucy

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Christopher Tsu

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Huay-Keng Loke

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Jingya Ma

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Gavin

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Blank

Millennium Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge