James E. O’Brien
Idaho National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James E. O’Brien.
Journal of Fuel Cell Science and Technology | 2009
Carl M. Stoots; James E. O’Brien; J. Stephen Herring; Joseph J. Hartvigsen
This paper presents results of recent experiments on simultaneous high-temperature electrolysis (coelectrolysis) of steam and carbon dioxide using solid-oxide electrolysis cells. Coelectrolysis is complicated by the fact that the reverse shift reaction occurs concurrently with the electrolytic reduction reactions. All reactions must be properly accounted for when evaluating results. Electrochemical performance of the button cells and stacks were evaluated over a range of temperatures, compositions, and flow rates. The apparatus used for these tests is heavily instrumented, with precision mass-flow controllers, on-line dewpoint and CO2 sensors, and numerous pressure and temperature measurement stations. It also includes a gas chromatograph for analyzing outlet gas compositions. Comparisons of measured compositions to predictions obtained from a chemical equilibrium coelectrolysis model are presented, along with corresponding polarization curves. Results indicate excellent agreement between predicted and measured outlet compositions. Cell area-specific resistance values were found to be similar for steam electrolysis and coelectrolysis. Coelectrolysis significantly increases the yield of syngas over the reverse water gas shift reaction equilibrium composition. The process appears to be a promising technique for large-scale syngas production.
Journal of Fuel Cell Science and Technology | 2006
James E. O’Brien; Carl M. Stoots; J. S. Herring; Joseph J. Hartvigsen
An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900oC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolytesupported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.
Journal of Heat Transfer-transactions of The Asme | 2008
Ali Siahpush; James E. O’Brien; John Crepeau
A detailed experimental and analytical study has been performed to evaluate how copper porous foam (CPF) enhances the heat transfer performance in a cylindrical solid/liquid phase change thermal energy storage system. The CPF used in this study had a 95% porosity and the phase change material (PCM) was 99% pure eicosane. The PCM and CPF were contained in a vertical cylinder where the temperature at its radial boundary was held constant, allowing both inward freezing and melting of the PCM. Detailed quantitative time-dependent volumetric temperature distributions and melt/freeze front motion and shape data were obtained. As the material changed phase, a thermal resistance layer built up, resulting in a reduced heat transfer rate between the surface of the container and the phase change front. In the freezing analysis, we analytically determined the effective thermal conductivity of the combined PCM/CPF system and the results compared well to the experimental values. The CPF increased the effective thermal conductivity from 0.423 W/m K to 3.06 W/mK. For the melting studies, we employed a heat transfer scaling analysis to model the system and develop heat transfer correlations. The scaling analysis predictions closely matched the experimental data of the solid/liquid interface position and Nusselt number.
Journal of Fuel Cell Science and Technology | 2012
M. S. Sohal; James E. O’Brien; Carl M. Stoots; V. I. Sharma; B. Yildiz; Anil V. Virkar
Idaho National Laboratory (INL) is performing high-temperature electrolysis (HTE) research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of ongoing INL and INL-sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and issues that need to be addressed in the future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on HTE using solid oxide cells do not provide clear evidence as to whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the SOECs showed that the hydrogen electrode and interconnect get partially oxidized and become nonconductive. This is most likely caused by the hydrogen stream composition and flow rate during cooldown. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation because of large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. Virkar et al. [19–22] have developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic nonequilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.Copyright
Journal of Heat Transfer-transactions of The Asme | 2004
James E. O’Brien; Manohar S. Sohal; Philip C. Wallstedt
We present the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with an elliptical tube and one or two delta-winglet pairs. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficients were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model
Journal of Heat Transfer-transactions of The Asme | 2012
James E. O’Brien
Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.
Archive | 2011
Peiwen Li; Jon Van Lew; Wafaa Karaki; Cho Lik Chan; Jake Stephens; James E. O’Brien
Compared to fossil fuel energy resources, the major types of renewable energy—such as wind power, solar energy, ocean currents, and tidal energy—generally possess the innate characteristics of intermittence of availability, fluctuation of magnitude, as well as low energy density (Li, 2008). However, the utilization of energy and power in industry, living, and working often requires high energy densities, and demand may be out of phase with the period of availability of renewable energy. In other words, renewable energy is not always load following. This variability creates a demand for energy storage when people develop renewable energy technologies (Kolb, 1998). Among the several types of renewable energy, solar energy has the largest proportion of the total available and may be directly used as thermal energy in conventional thermal power plants, or converted into electrical power directly using photovoltaic panels. Although direct electrical energy storage in batteries or capacitors may have a high efficiency, it is still very challenging and expensive—particularly when storing a large quantity of electrical energy (Spiers, 1995). Electricity may be indirectly stored by pumping water to reservoirs, or by compressing air, or by electrolyzing water and making hydrogen fuel, etc. However, these methods often have low round-trip efficiency (from electricity to electricity), or are restricted by the availability of geographical conditions or suitable locations. In comparison, it has been recognized that direct solar thermal energy storage is relatively easy to approach at a reasonably low cost and high efficiency, and the energy storage capacity can be much larger than that of direct electricity storage (Price et al., 2002; Montes et al, 2009). Thermal energy storage systems use materials that can be kept at high temperatures in insulated containers. The heat retrieved can then be used in conventional thermal power plants for power generation at times when sunlight is not available or when weather conditions are not favorable (Singer et al, 2010; Laing et al, 2010).
Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2009
E. A. Harvego; M. G. McKellar; James E. O’Brien
A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.
international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2004
James E. O’Brien; Carl M. Stoots; J. S. Herring; P. A. Lessing
An experimental study has been completed to assess the hydrogen-production performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 900°C. The experiments were performed over a range of steam inlet partial pressures (2.3 – 12.2 kPa), carrier gas flow rates (50–200 sccm), and current densities (−0.75 to 0.25 A/cm2 ) using single electrolyte-supported button cells of scandia-stabilized zirconia. Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Values of area-specific resistance and hydrogen production rate are presented as a function of current density. Cell performance is shown to be continuous from the fuel-cell mode to the electrolysis mode of operation. The effects of steam starvation and thermal cycling on cell performance parameters are discussed. Laboratory capabilities are currently being expanded to allow for testing and characterization of multiple-cell electrolysis stacks. Some fundamental differences between the fuel-cell and electrolysis modes of operation have been summarized.Copyright
ASME 2012 International Mechanical Engineering Congress and Exposition | 2012
Edwin A. Harvego; James E. O’Brien; Michael G. McKellar
Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimized of the design using a detailed process flow sheet and realistic operating conditions specified the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of