Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James E. Sligh is active.

Publication


Featured researches published by James E. Sligh.


Nature | 2004

The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore

Jason E. Kokoszka; Katrina G. Waymire; Shawn Levy; James E. Sligh; Jiyang Cai; Dean P. Jones; Grant R. MacGregor; Douglas C. Wallace

A sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP). It is thought that the mtPTP is a protein complex formed by the voltage-dependent anion channel, members of the pro- and anti-apoptotic BAX-BCL2 protein family, cyclophilin D, and the adenine nucleotide (ADP/ATP) translocators (ANTs). The latter exchange mitochondrial ATP for cytosolic ADP and have been implicated in cell death. To investigate the role of the ANTs in the mtPTP, we genetically inactivated the two isoforms of ANT in mouse liver and analysed mtPTP activation in isolated mitochondria and the induction of cell death in hepatocytes. Mitochondria lacking ANT could still be induced to undergo permeability transition, resulting in release of cytochrome c. However, more Ca2+ than usual was required to activate the mtPTP, and the pore could no longer be regulated by ANT ligands. Moreover, hepatocytes without ANT remained competent to respond to various initiators of cell death. Therefore, ANTs are non-essential structural components of the mtPTP, although they do contribute to its regulation.


Journal of Clinical Investigation | 2007

Overexpression of Akt converts radial growth melanoma to vertical growth melanoma

Baskaran Govindarajan; James E. Sligh; Bethaney J. Vincent; Meiling Li; Jeffrey A. Canter; Brian J. Nickoloff; Richard J. Rodenburg; Jan A.M. Smeitink; Larry W. Oberley; Yuping Zhang; Joyce M. Slingerland; Rebecca S. Arnold; J. David Lambeth; Cynthia Cohen; Lu Hilenski; Kathy K. Griendling; Marta Martínez-Diez; José M. Cuezva; Jack L. Arbiser

Melanoma is the cancer with the highest increase in incidence, and transformation of radial growth to vertical growth (i.e., noninvasive to invasive) melanoma is required for invasive disease and metastasis. We have previously shown that p42/p44 MAP kinase is activated in radial growth melanoma, suggesting that further signaling events are required for vertical growth melanoma. The molecular events that accompany this transformation are not well understood. Akt, a signaling molecule downstream of PI3K, was introduced into the radial growth WM35 melanoma in order to test whether Akt overexpression is sufficient to accomplish this transformation. Overexpression of Akt led to upregulation of VEGF, increased production of superoxide ROS, and the switch to a more pronounced glycolytic metabolism. Subcutaneous implantation of WM35 cells overexpressing Akt led to rapidly growing tumors in vivo, while vector control cells did not form tumors. We demonstrated that Akt was associated with malignant transformation of melanoma through at least 2 mechanisms. First, Akt may stabilize cells with extensive mitochondrial DNA mutation, which can generate ROS. Second, Akt can induce expression of the ROS-generating enzyme NOX4. Akt thus serves as a molecular switch that increases angiogenesis and the generation of superoxide, fostering more aggressive tumor behavior. Targeting Akt and ROS may be of therapeutic importance in treatment of advanced melanoma.


Journal of Clinical Investigation | 1996

Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice

T Kumasaka; William M. Quinlan; N A Doyle; Thomas P. Condon; James E. Sligh; Fumio Takei; Arthur L. Beaudet; C F Bennett; Claire M. Doerschuk

This study examined the effectiveness of antisense oligonucleotides targeted to intercellular adhesion molecule-1 (ICAM-1) to inhibit endotoxin-induced upregulation of ICAM-1 and neutrophil emigration and compared the apparent role of ICAM-1 when examined using antisense oligonucleotides, anti-ICAM-1 antibodies, and ICAM-1 mutant mice. Antisense oligonucleotides inhibited upregulation of ICAM-1 mRNA at 4 and 24 h after instillation of endotoxin in a dose-dependent manner. Neutrophil emigration into the alveolar spaces at 24 h was inhibited by 59%, similar to inhibition using the anti-ICAM-1 antibodies 3E2 (58%) and YN1/1 (75%). No inhibition was observed in the ICAM-1 mutant compared to wild-type mice. These data show that antisense oligonucleotides targeted to ICAM-1 inhibit the endotoxin-induced upregulation of ICAM-1 in the lung and are as effective as anti-ICAM-1 antibodies in preventing neutrophil emigration. The incomplete inhibition by either antisense oligonucleotides or antibodies suggests that alternative adhesion pathways that do not require ICAM-1 are important in neutrophil emigration in the lungs. The disparity in the role of ICAM-1 when evaluated using antisense or antibodies compared to mutant mice suggests that either these inhibitors are exerting additional effects on endothelial cells other than blockade of ICAM-1 or mutant mice have upregulated the ICAM-1-independent pathways to compensate for the long-term loss of ICAM-1.


Mitochondrion | 2010

Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients

Kimberly G. Norman; Jeffrey A. Canter; Mingjian Shi; Ginger L. Milne; Jason D. Morrow; James E. Sligh

Transplant recipients have an elevated risk of skin cancer, with a 65- to 250-fold increase in squamous cell carcinoma. Usage of the immunosuppressant cyclosporine A (CsA) is associated with the development of skin cancer. We hypothesized that the increased incidence of skin cancer was due to the action of CsA within keratinocyte mitochondria where it can inhibit mitochondrial permeability transition pore (MPTP) opening. Normally, MPTP opening is induced by oxidative stress such as that caused by UV light and leads to cell death, thereby eliminating a cell that has been exposed to genotoxic insult. However, in the presence of CsA, damaged cells may survive and consequently form tumors. To test this hypothesis, we treated keratinocytes with levels of CsA used therapeutically in transplant patients and assessed their viability following UVA-irradiation. CsA prevented cell death by inhibiting MPTP opening, even though the levels of oxidative stress were increased markedly. Nim811, a non-immunosuppressive drug that can block the MPTP had a similar effect while the immunosuppressive drug tacrolimus that does not interact with the mitochondria had no effect. These findings suggest that CsA may promote skin cancer in transplant patients by allowing keratinocyte survival under conditions of increased genotoxic stress.


Antimicrobial Agents and Chemotherapy | 1989

Study of the effects of liposomal amphotericin B on Candida albicans, Cryptococcus neoformans, and erythrocytes by using small unilamellar vesicles prepared from saturated phospholipids.

S Jullien; A Contrepois; James E. Sligh; Y Domart; P Yeni; J Brajtburg; G Medoff; Jacques Bolard

We compared the anticellular effects of liposomal amphotericin B (AmB) formed from AmB and small unilamellar vesicles. The small unilamellar vesicles with or without cholesterol were prepared from three L-alpha-phosphatidylcholines with saturated acyl chains of different lengths: distearoyl (C18), dipalmitoyl (C16), and dimyristoyl (C14). We found that the anticellular potency of liposomal AmB, compared with that of free AmB, decreased with decreasing length of the acyl chain of the phospholipid and increased with the addition of cholesterol. In a parallel study (S. Jullien, A. Vertut-Croquin, J. Brajtburg, and J. Bolard, Anal. Biochem. 172:197-202, 1988), we found that binding of AmB to vesicles decreased with increasing length of the acyl chain of the phospholipid and decreased with the addition of cholesterol. We conclude that the anticellular effects of liposomal AmB preparations are due to the levels of AmB remaining free (unbound to the lipids) in these preparations.


Experimental Cell Research | 2012

Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

Jana Jandova; Jaroslav Janda; James E. Sligh

We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.


Biochimica et Biophysica Acta | 2012

Somatic alterations in mitochondrial DNA produce changes in cell growth and metabolism supporting a tumorigenic phenotype

Jana Jandova; Mingjian Shi; Kimberly G. Norman; George P. Stricklin; James E. Sligh

There have been many reports of mitochondrial DNA (mtDNA) mutations associated with human malignancies. We have observed allelic instability in UV-induced cutaneous tumors at the mt-Tr locus encoding the mitochondrial tRNA for arginine. We examined the effects of somatic alterations at this locus by modeling the change in a uniform nuclear background by generating cybrids harboring allelic variation at mt-Tr. We utilized the naturally occurring mtDNA variation at mt-Tr within the BALB/cJ (BALB) and C57BL/6J (B6) strains of Mus musculus to transfer their mitochondria into a mouse ρ(0) cell line that lacked its own mtDNA. The BALB haplotype containing the mt-Tr 9821insA allele produced significant changes in cellular respiration (resulting in lowered ATP production), but increased rates of cellular proliferation in cybrid cells. Furthermore, the mtDNA genotype associated with UV-induced tumors endowed the cybrid cells with a phenotype of resistance to UV-induced apoptosis and enhanced migration and invasion capabilities. These studies support a role for mtDNA changes in cancer.


Journal of Investigative Dermatology | 2012

Identification of an mtDNA Mutation Hot Spot in UV-Induced Mouse Skin Tumors Producing Altered Cellular Biochemistry

Jana Jandova; Alex Eshaghian; Mingjian Shi; Meiling Li; Lloyd E. King; Jaroslav Janda; James E. Sligh

There is increasing awareness of a role of mtDNA alterations in the development of cancer since mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors and the tumor mtDNAs were screened for single nucleotide changes using temperature gradient capillary electrophoresis (TGCE) followed by direct sequencing. A mutation hot spot (9821insA) in mt-Tr locus (tRNAArg) was discovered in approximately one third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNAArg) alleles were generated. The resulting cybrid cell lines contain the same nuclear genotype and differ only in their mtDNA. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein resulting in lower levels of baseline oxygen consumption and lower cellular ATP production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry supporting the development of keratinocyte neoplasia.


Experimental Cell Research | 2013

Cyclophilin 40 alters UVA-induced apoptosis and mitochondrial ROS generation in keratinocytes.

Jana Jandova; Jaroslav Janda; James E. Sligh

Abstract The CyP40 protein encoded by PPID gene is a member of the peptidyl-prolyl cis–trans isomerase (PPIase) family. PPIases catalyze the cis–trans isomerization of proline imidic peptide bonds in oligopeptides and accelerate the folding of proteins. The CyP40 protein has been shown to possess PPIase activity and, similar to other family members, can bind to the immunosuppressant drug cyclosporin A (CsA). In this study, we created keratinocyte cell lines with CyP40 being stably knocked down using viral particles containing shRNA for CyP40 which knocked down the expression level of CyP40 transcripts by 90–99%. The proliferation rates of the cell lines with silenced CyP40 were decreased compared to the control cells. After UVA irradiation, the rate of apoptosis was found to be significantly lower in CyP40 silenced cell lines than it was in control cells. Moreover, mitochondrial membrane potential (MMP) was found to be less dissipated and mitochondrial permeability transition pore (MPTP) less active in cells with knocked down CyP40 than in control cells after UVA irradiation. Also, less mitochondrial superoxide was detected in the cells with silenced CyP40 compared to control cells after UVA exposure. Moreover, silencing of CyP40 partially modulates expression of key genes involved in mitochondrial pore formation including CyPD, ANTs and VDAC family members. The ability of CyP40 to regulate UV induced apoptosis implicates this protein as a potential target for therapy in cancer cells.


Archives of Dermatological Research | 2016

Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing

Jaroslav Janda; Valentine N. Nfonsam; Fernanda Calienes; James E. Sligh; Jana Jandova

Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ0 fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

Collaboration


Dive into the James E. Sligh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Eshaghian

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arthur L. Beaudet

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Morrow

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kimberly G. Norman

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire M. Doerschuk

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge