Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mingjian Shi is active.

Publication


Featured researches published by Mingjian Shi.


Biomicrofluidics | 2015

Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.

Jacquelyn A. Brown; Virginia Pensabene; Dmitry A. Markov; Vanessa Allwardt; M. Diana Neely; Mingjian Shi; Clayton M. Britt; Orlando S. Hoilett; Qing Yang; Bryson M. Brewer; Philip C. Samson; Lisa J. McCawley; James M. May; Donna J. Webb; Deyu Li; Aaron B. Bowman; Ronald S. Reiserer; John P. Wikswo

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.


Journal of Biological Chemistry | 2010

The Anti-tumorigenic Properties of Peroxisomal Proliferator-activated Receptor α Are Arachidonic Acid Epoxygenase-mediated

Ambra Pozzi; Vlad Popescu; Shilin Yang; Shaojun Mei; Mingjian Shi; Satu M. Puolitaival; Richard M. Caprioli; Jorge H. Capdevila

Prevalence and mortality make cancer a health challenge in need of effective and better tolerated therapeutic approaches, with tumor angiogenesis identified as a promising target for drug development. The epoxygenase products, the epoxyeicosatrienoic acids, are pro-angiogenic, and down-regulation of their biosynthesis by peroxisomal proliferator-activated receptor α (PPARα) ligands reduces tumor angiogenesis and growth. Endothelial cells lacking a Cyp2c44 epoxygenase, a PPARα target, show reduced proliferative and tubulogenic activities that are reversed by the enzymes metabolites. In a mouse xenograft model of tumorigenesis, disruption of the host Cyp2c44 gene causes marked reductions in tumor volume, mass, and vascularization. The relevance of these studies to human cancer is indicated by the demonstration that: (a) activation of human PPARα down-regulates endothelial cell CYP2C9 epoxygenase expression and blunts proliferation and tubulogenesis, (b) in a PPARα-humanized mouse model, activation of the receptor inhibits tumor angiogenesis and growth, and (c) the CYP2C9 epoxygenase is expressed in the vasculature of human tumors. The identification of anti-angiogenic/anti-tumorigenic properties of PPARα points to a role for the receptor and its epoxygenase regulatory target in the pathophysiology of cancer, and for its ligands as candidates for the development of a new generation of safer and better tolerated anti-cancer drugs.


Mitochondrion | 2010

Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients

Kimberly G. Norman; Jeffrey A. Canter; Mingjian Shi; Ginger L. Milne; Jason D. Morrow; James E. Sligh

Transplant recipients have an elevated risk of skin cancer, with a 65- to 250-fold increase in squamous cell carcinoma. Usage of the immunosuppressant cyclosporine A (CsA) is associated with the development of skin cancer. We hypothesized that the increased incidence of skin cancer was due to the action of CsA within keratinocyte mitochondria where it can inhibit mitochondrial permeability transition pore (MPTP) opening. Normally, MPTP opening is induced by oxidative stress such as that caused by UV light and leads to cell death, thereby eliminating a cell that has been exposed to genotoxic insult. However, in the presence of CsA, damaged cells may survive and consequently form tumors. To test this hypothesis, we treated keratinocytes with levels of CsA used therapeutically in transplant patients and assessed their viability following UVA-irradiation. CsA prevented cell death by inhibiting MPTP opening, even though the levels of oxidative stress were increased markedly. Nim811, a non-immunosuppressive drug that can block the MPTP had a similar effect while the immunosuppressive drug tacrolimus that does not interact with the mitochondria had no effect. These findings suggest that CsA may promote skin cancer in transplant patients by allowing keratinocyte survival under conditions of increased genotoxic stress.


Molecular Cancer Research | 2006

A Constitutively Active Lck Kinase Promotes Cell Proliferation and Resistance to Apoptosis through Signal Transducer and Activator of Transcription 5b Activation

Mingjian Shi; John C. Cooper; Chao-Lan Yu

Lck is a Src family protein tyrosine kinase and is expressed predominantly in T cells. Aberrant expression or activation of Lck kinase has been reported in both lymphoid and nonlymphoid malignancies. However, the mechanisms underlying Lck-mediated oncogenesis remain largely unclear. In this report, we establish a tetracycline-inducible system to study the biochemical and biological effects of a constitutively active Lck mutant with a point mutation at the negative regulatory tyrosine. Expression of the active Lck kinase induces both tyrosine phosphorylation and DNA-binding activity of signal transducer and activator of transcription 5b (STAT5b), a STAT family member activated in a variety of tumor cells. The active Lck kinase interacts with STAT5b in cells, suggesting that Lck may directly phosphorylate STAT5b. Expression of the constitutively active Lck mutant in interleukin-3 (IL-3)–dependent BaF3 cells promotes cell proliferation. In addition, the active Lck kinase protects BaF3 cells from IL-3 withdrawal-induced apoptotic death and leads to IL-3-independent growth. These transforming properties of the oncogenic Lck kinase can be further augmented by expression of exogenous wild-type STAT5b but attenuated by a dominant-negative form of STAT5b. All together, our results suggest the potential involvement of STAT5b in Lck-mediated cellular transformation. (Mol Cancer Res 2006;4(1):39–45)


Journal of Neuroinflammation | 2016

Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit

Jacquelyn A. Brown; Simona G. Codreanu; Mingjian Shi; Stacy D. Sherrod; Dmitry A. Markov; M. Diana Neely; Clayton M. Britt; Orlando S. Hoilett; Ronald S. Reiserer; Philip C. Samson; Lisa J. McCawley; Donna J. Webb; Aaron B. Bowman; John A. McLean; John P. Wikswo

BackgroundUnderstanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches—whether in vivo or in vitro—have often been only snapshots of this complex web of interactions.MethodsWe utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1β, TNF-α, and MCP1,2.ResultsIn this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response.ConclusionsTaken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure.


Journal of Biological Chemistry | 2012

Enhancing Integrin α1 Inserted (I) Domain Affinity to Ligand Potentiates Integrin α1β1-mediated Down-regulation of Collagen Synthesis

Mingjian Shi; Vadim Pedchenko; Briana H. Greer; Wade D. Van Horn; Samuel A. Santoro; Charles R. Sanders; Billy G. Hudson; Brandt F. Eichman; Roy Zent; Ambra Pozzi

Background: Integrin α1β1 binding to collagen IV down-regulates collagen synthesis, but how modulating integrin α1β1 affinity alters collagen homeostasis is unknown. Results: Cells carrying mutations of the α1 subunit with enhanced collagen binding show increased ERK activation and increased collagen down-regulation. Conclusion: Enhancing the affinity of the α1 subunit to collagen potentiates integrin α1β1-mediated outside-in signaling. Significance: These findings have major implications for pathological conditions such as fibrotic diseases. Integrin α1β1 binding to collagen IV, which is mediated by the α1-inserted (I) domain, down-regulates collagen synthesis. When unligated, a salt bridge between Arg287 and Glu317 is thought to keep this domain in a low affinity conformation. Ligand binding opens the salt bridge leading to a high-affinity conformation. How modulating integrin α1β1 affinity alters collagen homeostasis is unknown. To address this question, we utilized a thermolysin-derived product of the α1α2α1 network of collagen IV (α1α2α1(IV) truncated protomer) that selectively binds integrin α1β1. We show that an E317A substitution enhanced binding to the truncated protomer, consistent with a previous finding that this substitution eliminates the salt bridge. Surprisingly, we show that an R287A substitution did not alter binding, whereas R287E/E317R substitutions enhanced binding to the truncated protomer. NMR spectroscopy and molecular modeling suggested that eliminating the Glu317 negative charge is sufficient to induce a conformational change toward the open state. Thus, the role played by Glu317 is largely independent of the salt bridge. We further show that cells expressing E317A or R287E/E317R substitutions have enhanced down-regulation of collagen IV synthesis, which is mediated by the ERK/MAPK pathway. In conclusion, we have demonstrated that modulating the affinity of the extracellular α1 I domain to collagen IV enhances outside-in signaling by potentiating ERK activation and enhancing the down-regulation of collagen synthesis.


Journal of Cell Science | 2013

Activation of Rac by Asef2 promotes myosin II-dependent contractility to inhibit cell migration on type I collagen

Léolène Jean; Devi Majumdar; Mingjian Shi; Louis E. Hinkle; Nicole L. Diggins; Mingfang Ao; Joshua A. Broussard; J. Corey Evans; David P. Choma; Donna J. Webb

Summary Non-muscle myosin II (MyoII) contractility is central to the regulation of numerous cellular processes, including migration. Rho is a well-characterized modulator of actomyosin contractility, but the function of other GTPases, such as Rac, in regulating contractility is currently not well understood. Here, we show that activation of Rac by the guanine nucleotide exchange factor Asef2 (also known as SPATA13) impairs migration on type I collagen through a MyoII-dependent mechanism that enhances contractility. Knockdown of endogenous Rac or treatment of cells with a Rac-specific inhibitor decreases the amount of active MyoII, as determined by serine 19 (S19) phosphorylation, and negates the Asef2-promoted increase in contractility. Moreover, treatment of cells with blebbistatin, which inhibits MyoII activity, abolishes the Asef2-mediated effect on migration. In addition, Asef2 slows the turnover of adhesions in protrusive regions of cells by promoting large mature adhesions, which has been linked to actomyosin contractility, with increased amounts of active &bgr;1 integrin. Hence, our data reveal a new role for Rac activation, promoted by Asef2, in modulating actomyosin contractility, which is important for regulating cell migration and adhesion dynamics.


Biochimica et Biophysica Acta | 2012

Somatic alterations in mitochondrial DNA produce changes in cell growth and metabolism supporting a tumorigenic phenotype

Jana Jandova; Mingjian Shi; Kimberly G. Norman; George P. Stricklin; James E. Sligh

There have been many reports of mitochondrial DNA (mtDNA) mutations associated with human malignancies. We have observed allelic instability in UV-induced cutaneous tumors at the mt-Tr locus encoding the mitochondrial tRNA for arginine. We examined the effects of somatic alterations at this locus by modeling the change in a uniform nuclear background by generating cybrids harboring allelic variation at mt-Tr. We utilized the naturally occurring mtDNA variation at mt-Tr within the BALB/cJ (BALB) and C57BL/6J (B6) strains of Mus musculus to transfer their mitochondria into a mouse ρ(0) cell line that lacked its own mtDNA. The BALB haplotype containing the mt-Tr 9821insA allele produced significant changes in cellular respiration (resulting in lowered ATP production), but increased rates of cellular proliferation in cybrid cells. Furthermore, the mtDNA genotype associated with UV-induced tumors endowed the cybrid cells with a phenotype of resistance to UV-induced apoptosis and enhanced migration and invasion capabilities. These studies support a role for mtDNA changes in cancer.


Biomedical Microdevices | 2014

A microfluidic cell co-culture platform with a liquid fluorocarbon separator

Bryson M. Brewer; Mingjian Shi; Jon F. Edd; Donna J. Webb; Deyu Li

A microfluidic cell co-culture platform that uses a liquid fluorocarbon oil barrier to separate cells into different culture chambers has been developed. Characterization indicates that the oil barrier could be effective for multiple days, and a maximum pressure difference between the oil barrier and aqueous media in the cell culture chamber could be as large as ~3.43 kPa before the oil barrier fails. Biological applications have been demonstrated with the separate transfection of two groups of primary hippocampal neurons with two different fluorescent proteins and subsequent observation of synaptic contacts between the neurons. In addition, the quality of the fluidic seal provided by the oil barrier is shown to be greater than that of an alternative solid-PDMS valve barrier design by testing the ability of each device to block low molecular weight CellTracker dyes used to stain cells in the culture chambers.


Journal of Investigative Dermatology | 2012

Identification of an mtDNA Mutation Hot Spot in UV-Induced Mouse Skin Tumors Producing Altered Cellular Biochemistry

Jana Jandova; Alex Eshaghian; Mingjian Shi; Meiling Li; Lloyd E. King; Jaroslav Janda; James E. Sligh

There is increasing awareness of a role of mtDNA alterations in the development of cancer since mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors and the tumor mtDNAs were screened for single nucleotide changes using temperature gradient capillary electrophoresis (TGCE) followed by direct sequencing. A mutation hot spot (9821insA) in mt-Tr locus (tRNAArg) was discovered in approximately one third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNAArg) alleles were generated. The resulting cybrid cell lines contain the same nuclear genotype and differ only in their mtDNA. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein resulting in lower levels of baseline oxygen consumption and lower cellular ATP production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry supporting the development of keratinocyte neoplasia.

Collaboration


Dive into the Mingjian Shi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deyu Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberly G. Norman

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yandong Gao

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge