Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Greenhaw is active.

Publication


Featured researches published by James Greenhaw.


Toxicological Sciences | 2012

Identification of Urinary microRNA Profiles in Rats That May Diagnose Hepatotoxicity

Xi Yang; James Greenhaw; Qiang Shi; Zhenqiang Su; Feng Qian; Kelly Davis; Donna L. Mendrick; William F. Salminen

Circulating microRNAs (miRNAs) have emerged as novel noninvasive biomarkers for several diseases and other types of tissue injury. This study tested the hypothesis that changes in the levels of urinary miRNAs correlate with liver injury induced by hepatotoxicants. Sprague-Dawley rats were administered acetaminophen (APAP) or carbon tetrachloride (CCl(4)) and one nonhepatotoxicant (penicillin/PCN). Urine samples were collected over a 24 h period after a single oral dose of APAP (1250 mg/kg), CCl(4) (2000 mg/kg), or PCN (2400 mg/kg). APAP and CCl(4) induced liver injury based upon increased serum alanine and aspartate aminotransferase levels and histopathological findings, including liver necrosis. APAP and CCl(4) both significantly increased the urinary levels of 44 and 28 miRNAs, respectively. In addition, 10 of the increased miRNAs were in common between APAP and CCl(4). In contrast, PCN caused a slight decrease of a different nonoverlapping set of urinary miRNAs. Cluster analysis revealed a distinct urinary miRNA pattern from the hepatotoxicant-treated groups when compared with vehicle controls and PCN. Analysis of hepatic miRNA levels suggested that the liver was the source of the increased urinary miRNAs after APAP exposure; however, the results from CCl(4) were equivocal. Computational analysis was used to predict target genes of the 10 shared hepatotoxicant-induced miRNAs. Liver gene expression profiling using whole genome microarrays identified eight putative miRNA target genes that were significantly altered in the liver of APAP- and CCl(4)-treated animals. In conclusion, the patterns of urinary miRNA may hold promise as biomarkers of hepatotoxicant-induced liver injury.


Toxicology and Applied Pharmacology | 2015

Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children.

Xi Yang; William F. Salminen; Qiang Shi; James Greenhaw; Pritmohinder Gill; Sudeepa Bhattacharyya; Richard D. Beger; Donna L. Mendrick; William Mattes; Laura P. James

UNLABELLED Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n=10), 2) hospitalized children receiving therapeutic doses of APAP (n=10) and 3) children hospitalized for APAP overdose (n=8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R=0.94; p<0.01) followed by miR-375 (R=0.70; p=0.05). CONCLUSION Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity.


Food and Chemical Toxicology | 2012

Green tea extract can potentiate acetaminophen-induced hepatotoxicity in mice

William F. Salminen; Xi Yang; Qiang Shi; James Greenhaw; Kelly J. Davis; Akhtar Ali

Green tea extract (GTE) has been advocated as a hepatoprotective compound and a possible therapeutic agent for acetaminophen (APAP) overdose. This study was conducted to determine if GTE can provide protection against APAP-induced hepatotoxicity. Three different exposure scenarios were tested. The first involved administering APAP (150 mg/kg, orally) to mice followed 6h later by GTE (500 or 1000 mg/kg). The other two involved administering GTE prior to the APAP dose. GTE (500 or 1000 mg/kg, orally) was administered 3h prior to APAP (200 mg/kg, orally) or for three consecutive days (once-daily) followed by APAP (300 mg/kg) on the fourth day. Indices of hepatotoxicity were assessed 24h after the APAP dose. GTE potentiated APAP-induced hepatotoxicity when administered after the APAP dose. GTE caused significant glutathione depletion and this effect likely contributed to the observed potentiation. In contrast, GTE provided protection against APAP-induced hepatotoxicity when administered prior to the APAP dose. GTE dramatically decreased APAP covalent binding to protein indicating that less reactive metabolite was available to cause hepatocellular injury. These results highlight the potential for drug-dietary supplement interactions and the importance of testing multiple exposure scenarios to adequately model different types of potential interactions.


Food and Chemical Toxicology | 2013

Metabolomics evaluation of the effects of green tea extract on acetaminophen-induced hepatotoxicity in mice.

Yihong Lu; Jinchun Sun; Katya Petrova; Xi Yang; James Greenhaw; William F. Salminen; Richard D. Beger; Laura K. Schnackenberg

Green tea has been purported to have beneficial health effects including protective effects against oxidative stress. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. These studies explored the effects of green tea extract (GTE) on APAP-induced hepatotoxicity in liver tissue extracts using ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. Mice were orally administered GTE, APAP or GTE and APAP under three scenarios. APAP alone caused a high degree of hepatocyte necrosis associated with increases in serum transaminases and alterations in multiple metabolic pathways. The time of GTE oral administration relative to APAP either protected against or potentiated the APAP-induced hepatotoxicity. Dose dependent decreases in histopathology scores and serum transaminases were noted when GTE was administered prior to APAP; whereas, the opposite occurred when GTE was administered after APAP. Similarly, metabolites altered by APAP alone were less changed when GTE was given prior to APAP. Significantly altered pathways included fatty acid metabolism, glycerophospholipid metabolism, glutathione metabolism, and energy pathways. These studies demonstrate the complex interaction between GTE and APAP and the need to employ novel analytical strategies to understand the effects of dietary supplements on pharmaceutical compounds.


Toxicological Sciences | 2011

Hepatic cytochrome P450s attenuate the cytotoxicity induced by leflunomide and its active metabolite A77 1726 in primary cultured rat hepatocytes

Qiang Shi; Xi Yang; James Greenhaw; William F. Salminen

The Black Box Warning section of the U.S. drug label for leflunomide was recently updated to include stronger warnings about potential hepatotoxicity from this novel anti-arthritis drug. Because metabolic activation is a key mechanism for drug-induced hepatotoxicity, we examined whether leflunomide and its major metabolite, A77 1726, are cytotoxic to primary rat hepatocytes and whether their toxicity is modulated by hepatic cytochrome P450s (CYPs). As measured by lactate dehydrogenase leakage, time-dependent cytotoxicity was observed at 250-500 μM for leflunomide and 330-500 μM for A77 1726 within 20 h. Unexpectedly, three nonisoenzyme-specific CYP inhibitors, including SKF-525A, metyrapone, and 1-aminobenzotriazole, did not reduce but remarkably enhanced the cytotoxicity of leflunomide or A77 1726. SKF-525A pretreatment notably rendered hepatocytes susceptible to as low as 15 μM leflunomide or A77 1726. Three isoenzyme-specific CYP inhibitors including alpha-naphthoflavone, ticlopidine, and ketoconazole that mainly target CYP1A, CYP2B/2C, and CYP3A, respectively, also enhanced the cytotoxicity. A strong synergistic effect, similar to SKF-525A alone, was noted using a combination of all three of the isoenzyme-specific inhibitors. Hepatocytes pretreated with the CYP inducer dexamethasone for 24 h exhibited decreased cytotoxicity to leflunomide and A77 1726. At the concentrations tested, the CYP inhibitors and inducer showed no cytotoxicity. These data demonstrate that the parent forms of leflunomide and A77 1726 are more toxic to hepatocytes than their poorly characterized metabolites, indicating that the metabolic process of leflunomide is a detoxification step rather than an initiating event leading to toxicity.


Toxicology | 2015

Regorafenib impairs mitochondrial functions, activates AMP-activated protein kinase, induces autophagy, and causes rat hepatocyte necrosis.

Zuquan Weng; Yong Luo; Xi Yang; James Greenhaw; Haibo Li; Liming Xie; William Mattes; Qiang Shi

The tyrosine kinase inhibitor regorafenib was approved by regulatory agencies for cancer treatment, albeit with strong warnings of severe hepatotoxicity included in the product label. The basis of this toxicity is unknown; one possible mechanism, that of mitochondrial damage, was tested. In isolated rat liver mitochondria, regorafenib directly uncoupled oxidative phosphorylation (OXPHOS) and promoted calcium overload-induced swelling, which were respectively prevented by the recoupler 6-ketocholestanol (KC) and the mitochondrial permeability transition (MPT) pore blocker cyclosporine A (CsA). In primary hepatocytes, regorafenib uncoupled OXPHOS, disrupted mitochondrial inner membrane potential (MMP), and decreased cellular ATP at 1h, and triggered MPT at 3h, which was followed by necrosis but not apoptosis at 7h and 24h, all of which were abrogated by KC. The combination of the glycolysis enhancer fructose plus the mitochondrial ATPase synthase inhibitor oligomycin A abolished regorafenib induced necrosis at 7h. This effect was not seen at 24h nor with the fructose or oligomycin A separately. CsA in combination with trifluoperazine, both MPT blockers, showed similar effects. Two compensatory mechanisms, activation of AMP-activated protein kinase (AMPK) to ameliorate ATP shortage and induction of autophagy to remove dysfunctional mitochondria, were found to be mobilized. Hepatocyte necrosis was enhanced either by the AMPK inhibitor Compound C or the autophagy inhibitor chloroquine, while autophagy inducer rapamycin was strongly cytoprotective. Remarkably, all toxic effects were observed at clinically-relevant concentrations of 2.5-15μM. These data suggest that uncoupling of OXPHOS and the resulting ATP shortage and MPT induction are the key mechanisms for regorafenib induced hepatocyte injury, and AMPK activation and autophagy induction serve as pro-survival pathways against such toxicity.


Toxicology Letters | 2014

Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma

W. Mattes; K. Davis; E. Fabian; James Greenhaw; Michael Manfred Herold; Ralf Looser; W. Mellert; Sibylle Groeters; Heike Marxfeld; Niels Moeller; Gina Montoya-Parra; Alexandre Prokoudine; B. van Ravenzwaay; V. Strauss; Tilmann B. Walk; H. Kamp

While conventional parameters used to detect hepatotoxicity in drug safety assessment studies are generally informative, the need remains for parameters that can detect the potential for hepatotoxicity at lower doses and/or at earlier time points. Previous work has shown that metabolite profiling (metabonomics/metabolomics) can detect signals of potential hepatotoxicity in rats treated with doxorubicin at doses that do not elicit hepatotoxicity as monitored with conventional parameters. The current study extended this observation to the question of whether such signals could be detected in rats treated with compounds that can elicit hepatotoxicity in humans (i.e., drug-induced liver injury, DILI) but have not been reported to do so in rats. Nine compounds were selected on the basis of their known DILI potential, with six other compounds chosen as negative for DILI potential. A database of rat plasma metabolite profiles, MetaMap(®)Tox (developed by metanomics GmbH and BASF SE) was used for both metabolite profiles and mode of action (MoA) metabolite signatures for a number of known toxicities. Eight of the nine compounds with DILI potential elicited metabolite profiles that matched with MoA patterns of various rat liver toxicities, including cholestasis, oxidative stress, acetaminophen-type toxicity and peroxisome proliferation. By contrast, only one of the six non-DILI compounds showed a weak match with rat liver toxicity. These results suggest that metabolite profiling may indeed have promise to detect signals of hepatotoxicity in rats treated with compounds having DILI potential.


Journal of Molecular Biomarkers & Diagnosis | 2013

Systems Biology Investigation to Discover Metabolic Biomarkers of Acetaminophen-Induced Hepatic Injury Using Integrated Transcriptomics and Metabolomics

Jinchun Sun; Yosuke Ando; Dörthe Ahlbory-Dieker; Laura K. Schnackenberg; Xi Yang; James Greenhaw; Lisa Pence; Feng Qian; William F. Salminen; Donna L. Mendrick; Richard D. Beger

Background: Drug-induced hepatotoxicity is one of the major reasons for drug recall and hence it is of major concern to the FDA and consumers. Overdose of acetaminophen (APAP) can cause acute hepatic injury. The current clinical biomarkers of liver injury are insufficient in predicting the extent of injury; thus novel biomarkers are needed to integrate with the current biomarkers for better risk assessment during drug development and clinical use. Methods: Sprague-Dawley rats were orally gavaged with a single dose of 0.5% methylcellulose (control), 100 mg APAP/kg body weight or 1250 mg APAP/kg body weight. Urine, terminal blood samples and tissues were collected at 6, 24, 72, and 168 h for clinical chemistry and histopathology analyses. Based on the clinical chemistry data and histopathology, liver injury occurred in treated animals during the first 24 h, while recovery occurred during 72 to 168 h. A systems biology investigation of APAP-induced hepatic injury was conducted to elucidate novel metabolic biomarkers using an integrated transcriptomic and metabolomic approach. Both open metabolic profiling and broad metabolic profiling were utilized to examine metabolic changes in blood and open profiling was used to evaluate changes in the urinary metabolite profiles. Results: In total, 270 metabolites were evaluated in blood and/or urine. Metabolites involved in energy, urea and bile acid pathways were found to have strong correlations to hepatic necrosis scores and elevated alanine aminotransferase levels. The pathways associated with these metabolites were altered at the first 72 h but had generally recovered at 168 h. Changes in hepatic gene expression of the bile acid pathway supported the interpretation from the metabolomics data. Conclusion: The combination of the transcriptomics and metabolic profiling technologies discovered novel injury biomarkers (arginine, 2-oxoarginine, medium chain dicarboxylic acids, α-ketoglutarate and bile acids), which are involved in energy, bile acid, and arginine metabolism pathway.


Journal of Chromatography B | 2013

Evaluating effects of penicillin treatment on the metabolome of rats

Jinchun Sun; Laura K. Schnackenberg; Sangeeta Khare; Xi Yang; James Greenhaw; William F. Salminen; Donna L. Mendrick; Richard D. Beger

Penicillin (PEN) V, a well-known antibiotic widely used in the treatment of Gram-positive bacterial infections, was evaluated in this study. LC/MS- and NMR-based metabolic profiling were employed to examine the effects of PEN on the hosts metabolic phenotype. Male Sprague Dawley rats were randomly divided into groups that were orally administered either 0.5% methylcellulose vehicle, 100 or 2400mg PEN/kg body weight once daily for up to 14 consecutive days. Urine, plasma and tissue were collected from groups sacrificed at 6h, 24h or 14d. The body fluids were subjected to clinical chemistry and metabolomics analysis; the tissue samples were processed for histopathology. The only notable clinical chemistry observation was that gamma glutamyltransferase (GGT) significantly decreased at 24h for both dose groups, and significantly decreased at 14d for the high-dose groups. Partial least squares discriminant analysis scores plots of the metabolomics data from urine and plasma samples showed dose- and time-dependent grouping patterns. Time- and dose-dependent decreases in urinary metabolites including indole-containing metabolites (such as 3-methyldioxyindole sulfate generated from bacterial metabolism of tryptophan), organic acids containing phenyl groups (such as hippuric acid, phenyllactic acid and 3-hydroxyanthranilic acid), and metabolites conjugated with sulfate or glucuronide (such as cresol sulfate and aminophenol sulfate) indicated that the gut microflora population was suppressed. Decreases in many host-gut microbiota urinary co-metabolites (indole- and phenyl-containing metabolites, amino acids, vitamins, nucleotides and bile acids) suggested gut microbiota play important roles in the regulation of host metabolism, including dietary nutrient absorption and reprocessing the absorbed nutrients. Decreases in urinary conjugated metabolites (sulfate, glucuronide and glycine conjugates) implied that gut microbiota might have an impact on chemical detoxification mechanisms. In all, these results clearly show that metabolic profiling is a useful tool to better understand the effects of the antibiotic penicillin has on the gut microbiota and the host.


Journal of Pharmacology and Experimental Therapeutics | 2012

Changes in Mouse Liver Protein Glutathionylation after Acetaminophen Exposure

Xi Yang; James Greenhaw; Akhtar Ali; Qiang Shi; Dean W. Roberts; Jack A. Hinson; Levan Muskhelishvili; Richard D. Beger; Lisa Pence; Yosuke Ando; Jinchun Sun; Kelly Davis; William F. Salminen

The role of protein glutathionylation in acetaminophen (APAP)-induced liver injury was investigated in this study. A single oral gavage dose of 150 or 300 mg/kg APAP in B6C3F1 mice produced increased serum alanine aminotransferase and aspartate aminotransferase levels and liver necrosis in a dose-dependent manner. The ratio of GSH to GSSG was decreased in a dose-dependent manner, suggesting that APAP produced a more oxidizing environment within the liver. Despite the increased oxidation state, the level of global protein glutathionylation was decreased at 1 h and continued to decline through 24 h. Immunohistochemical localization of glutathionylated proteins showed a complex dynamic change in the lobule zonation of glutathionylated proteins. At 1 h after APAP exposure, the level of glutathionylation decreased in the single layer of hepatocytes around the central veins but increased mildly in the remaining centrilobular hepatocytes. This increase correlated with the immunohistochemical localization of APAP covalently bound to protein. Thereafter, the level of glutathionylation decreased dramatically over time in the centrilobular regions with major decreases observed at 6 and 24 h. Despite the overall decreased glutathionylation, a layer of cells lying between the undamaged periportal region and the damaged centrilobular hepatocytes exhibited high levels of glutathionylation at 3 and 6 h in all samples and in some 24-h samples that had milder injury. These temporal and zonal pattern changes in protein glutathionylation after APAP exposure indicate that protein glutathionylation may play a role in protein homeostasis during APAP-induced hepatocellular injury.

Collaboration


Dive into the James Greenhaw's collaboration.

Top Co-Authors

Avatar

Xi Yang

Center for Drug Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Qiang Shi

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Richard D. Beger

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Donna L. Mendrick

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Jinchun Sun

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Laura K. Schnackenberg

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Joe M. Fowler

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Kelly J. Davis

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Lisa Pence

National Center for Toxicological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge