Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Haorah is active.

Publication


Featured researches published by James Haorah.


Journal of Neuroimmune Pharmacology | 2006

Blood–brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions

Yuri Persidsky; Servio H. Ramirez; James Haorah; Georgette D. Kanmogne

Abstract The blood–brain barrier (BBB) is the specialized system of brain microvascular endothelial cells (BMVEC) that shields the brain from toxic substances in the blood, supplies brain tissues with nutrients, and filters harmful compounds from the brain back to the bloodstream. The close interaction between BMVEC and other components of the neurovascular unit (astrocytes, pericytes, neurons, and basement membrane) ensures proper function of the central nervous system (CNS). Transport across the BBB is strictly limited through both physical (tight junctions) and metabolic barriers (enzymes, diverse transport systems). A functional polarity exists between the luminal and abluminal membrane surfaces of the BMVEC. As a result of restricted permeability, the BBB is a limiting factor for the delivery of therapeutic agents into the CNS. BBB breakdown or alterations in transport systems play an important role in the pathogenesis of many CNS diseases (HIV-1 encephalitis, Alzheimers disease, ischemia, tumors, multiple sclerosis, and Parkinsons disease). Proinflammatory substances and specific disease-associated proteins often mediate such BBB dysfunction. Despite seemingly diverse underlying causes of BBB dysfunction, common intracellular pathways emerge for the regulation of the BBB structural and functional integrity. Better understanding of tight junction regulation and factors affecting transport systems will allow the development of therapeutics to improve the BBB function in health and disease.


Journal of Neurochemistry | 2007

Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction.

James Haorah; Servio H. Ramirez; Kathy Schall; Daniel Smith; Rita Pandya; Yuri Persidsky

The blood–brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP‐1, ‐2, and ‐9) and decreased tissue inhibitors of MMPs (TIMP‐1 and ‐2) in a protein tyrosine kinase (PTK)‐dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK‐mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.


Free Radical Biology and Medicine | 2008

Mechanism of alcohol-induced oxidative stress and neuronal injury

James Haorah; Servio H. Ramirez; Nicholas A. Floreani; Santhi Gorantla; Brenda Morsey; Yuri Persidsky

Neuro-cognitive deficits, neuronal injury, and neurodegeneration are well documented in alcoholics, yet the underlying mechanisms remain elusive. Oxidative damage of mitochondria and cellular proteins intertwines with the progression of neuroinflammation and neurological disorders initiated by alcohol abuse. Here, we present the evidence that metabolism of ethanol in primary human neurons by alcohol dehydrogenase (ADH) or cytochrome P450-2E1 (CYP2E1) generates reactive oxygen species (ROS) and nitric oxide (NO) via induction of NADPH/xanthine oxidase (NOX/XOX) and nitric oxide synthase (NOS) in human neurons. The acetaldehyde-mediated increase in NOX, XOX, or NOS activity is regulated as a transcriptional rather than a translational process. Marked increase in the lipid peroxidation product (4-hydroxynonenal) and enhanced ROS generation coincides with decreased neuronal viability and diminished expression of neuronal marker (neurofilaments). Novel quantitative methods of ROS and NO detection help dissect the mechanisms of alcohol-induced neurodegeneration. Uncovering the basic mechanisms of oxidative neuronal injury will serve as the basis for development of new therapies.


Journal of Leukocyte Biology | 2005

Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction.

James Haorah; Bryan Knipe; J. Leibhart; Anuja Ghorpade; Yuri Persidsky

Brain microvascular endothelial cells (BMVEC) connected by tight junctions (TJ) form a tight monolayer at the blood‐brain barrier (BBB). We investigated the idea that BBB dysfunction seen in alcohol abuse is associated with oxidative stress stemming from ethanol (EtOH) metabolism in BMVEC. Exposure to EtOH induced catalytic activity/expression of EtOH‐metabolizing enzymes, which paralleled enhanced generation of reactive oxygen species (ROS). EtOH‐mediated oxidative stress led to activation of myosin light chain (MLC) kinase, phosphorylation of MLC and TJ proteins, decreased BBB integrity, and enhanced monocyte migration across BBB. Acetaldehyde or ROS donors mimicked changes induced by EtOH in BMVEC. Thus, oxidative stress resulting from alcohol metabolism in BMVEC can lead to BBB breakdown in alcohol abuse, serving as an aggravating factor in neuroinflammatory disorders.


Free Radical Biology and Medicine | 2013

Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast

P.M. Abdul-Muneer; Heather Schuetz; Fang Wang; Maciej Skotak; Joselyn Jones; Santhi Gorantla; Matthew C. Zimmerman; Namas Chandra; James Haorah

We investigate the hypothesis that oxidative damage of the cerebral vascular barrier interface (the blood-brain barrier, BBB) causes the development of mild traumatic brain injury (TBI) during a primary blast-wave spectrum. The underlying biochemical and cellular mechanisms of this vascular layer-structure injury are examined in a novel animal model of shock tube. We first established that low-frequency (123kPa) single or repeated shock wave causes BBB/brain injury through biochemical activation by an acute mechanical force that occurs 6-24h after the exposure. This biochemical damage of the cerebral vasculature is initiated by the induction of the free radical-generating enzymes NADPH oxidase 1 and inducible nitric oxide synthase. Induction of these enzymes by shock-wave exposure paralleled the signatures of oxidative and nitrosative damage (4-HNE/3-NT) and reduction of the BBB tight-junction (TJ) proteins occludin, claudin-5, and zonula occluden 1 in the brain microvessels. In parallel with TJ protein disruption, the perivascular unit was significantly diminished by single or repeated shock-wave exposure coinciding with the kinetic profile. Loosening of the vasculature and perivascular unit was mediated by oxidative stress-induced activation of matrix metalloproteinases and fluid channel aquaporin-4, promoting vascular fluid cavitation/edema, enhanced leakiness of the BBB, and progression of neuroinflammation. The BBB leakiness and neuroinflammation were functionally demonstrated in an in vivo model by enhanced permeativity of Evans blue and sodium fluorescein low-molecular-weight tracers and the infiltration of immune cells across the BBB. The detection of brain cell proteins neuron-specific enolase and S100β in the blood samples validated the neuroastroglial injury in shock-wave TBI. Our hypothesis that cerebral vascular injury occurs before the development of neurological disorders in mild TBI was further confirmed by the activation of caspase-3 and cell apoptosis mostly around the perivascular region. Thus, induction of oxidative stress and activation of matrix metalloproteinases by shock wave underlie the mechanisms of cerebral vascular BBB leakage and neuroinflammation.


Alcoholism: Clinical and Experimental Research | 2005

Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise.

James Haorah; David Heilman; Bryan Knipe; Jesse Chrastil; Jessica Leibhart; Anuja Ghorpade; Donald W. Miller; Yuri Persidsky

BACKGROUND Brain endothelial cells form the blood-brain barrier (BBB) that regulates solute and macromolecule flux in and out of the brain, leukocyte migration, and maintains the homeostasis of the central nervous system. BBB dysfunction is associated with disruption of tight junctions (TJ) in the brain endothelium. We propose that alcohol abuse may impair BBB permeability through TJ modification. METHODS Primary cultured bovine brain microvascular endothelial cells (BBMEC) were treated with 50 mM ethanol (EtOH), and monolayer tightness was assessed by measurement of transendothelial electrical resistance (TEER). Changes in TEER were correlated with alterations in TJ protein distribution [occludin, zonula occludens-1 (ZO-1), claudin-5] using immunofluorescence (IF). Expression of myosin light chain (MLC) kinase (MLCK), ZO-1, claudin-5, and phosphorylated MLC, occludin and claudin-5 were determined by immunoprecipitation and Western blot. EtOH-induced changes in monocyte migration across in vitro BBB constructs were also examined. RESULTS EtOH induced a decrease in TEER of BBMEC monolayers that was reversed by EtOH withdrawal. Treatment of BBMEC with EtOH or its metabolite, acetaldehyde, prior to monocyte application resulted in a 2-fold increase in monocyte migration across the BBB. IF demonstrated decrease in claudin-5 staining, occludin translocation from cell borders to cytoplasm and gap formation in EtOH-treated BBMEC monolayer. These changes paralleled significant increase in phosphorylation of MLC, occludin and claudin-5. EtOH-treated BBMEC showed reduction of total occludin and claudin-5 without changes in ZO-1 or MLC. TEER decrease, changes in occludin/claudin staining, increase in MLC, occludin and claudin-5 phosphorylation and enhanced monocyte migration across the BBB were all reversed by inhibition of MLCK. Inhibition of EtOH metabolism in BBMEC also reversed these events. CONCLUSION These results suggest that EtOH activates MLCK leading to phosphorylation of MLC, occludin and claudin-5. Cytoskeletal alterations (MLC) and TJ changes (occludin and claudin-5 phosphorylation) result in BBB impairment (decrease in TEER). TJ compromise is associated with increased monocyte migration across the BBB.


Molecular Neurobiology | 2015

Interactions of Oxidative Stress and Neurovascular Inflammation in the Pathogenesis of Traumatic Brain Injury

P.M. Abdul-Muneer; Namas Chandra; James Haorah

Traumatic brain injury (TBI) is a major cause of death in the young age group and leads to persisting neurological impairment in many of its victims. It may result in permanent functional deficits because of both primary and secondary damages. This review addresses the role of oxidative stress in TBI-mediated secondary damages by affecting the function of the vascular unit, changes in blood-brain barrier (BBB) permeability, posttraumatic edema formation, and modulation of various pathophysiological factors such as inflammatory factors and enzymes associated with trauma. Oxidative stress plays a major role in many pathophysiologic changes that occur after TBI. In fact, oxidative stress occurs when there is an impairment or inability to balance antioxidant production with reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels. ROS directly downregulate proteins of tight junctions and indirectly activate matrix metalloproteinases (MMPs) that contribute to open the BBB. Loosening of the vasculature and perivascular unit by oxidative stress-induced activation of MMPs and fluid channel aquaporins promotes vascular or cellular fluid edema, enhances leakiness of the BBB, and leads to progression of neuroinflammation. Likewise, oxidative stress activates directly the inflammatory cytokines and growth factors such as IL-1β, tumor necrosis factor-α (TNF-α), and transforming growth factor-beta (TGF-β) or indirectly by activating MMPs. In another pathway, oxidative stress-induced degradation of endothelial vascular endothelial growth factor receptor-2 (VEGFR-2) by MMPs leads to a subsequent elevation of cellular/serum VEGF level. The decrease in VEGFR-2 with a subsequent increase in VEGF-A level leads to apoptosis and neuroinflammation via the activation of caspase-1/3 and IL-1β release.


Journal of Immunology | 2008

Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) suppresses Rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes.

Servio H. Ramirez; David Heilman; Brenda Morsey; Raghava Potula; James Haorah; Yuri Persidsky

Under inflammatory conditions (including HIV-1 encephalitis and multiple sclerosis), activated brain endothelium enhances the adhesion and transmigration of monocytes across the blood-brain barrier (BBB). Synthetic ligands that activate the peroxisome proliferator-activated receptors (PPARs) have anti-inflammatory properties, and PPAR stimulation prevents the interaction of leukocytes with cytokine stimulated-endothelium. However, the mechanism underlying these effects of PPAR ligands and their ability to intervene with leukocyte adhesion and migration across brain endothelial cells has yet to be explored. For the first time, using primary human brain endothelial cells (BMVEC), we demonstrated that monocyte adhesion and transendothelial migration across inflamed endothelium were markedly reduced by PPARγ activation. In contrast to non-brain-derived endothelial cells, PPARα activation in the BMVEC had no significant effect on monocyte-endothelial interaction. Previously, our work indicated a critical role of Rho GTPases (like RhoA) in BMVEC to control migration of HIV-1 infected monocytes across BBB. In this study, we show that in the BMVEC PPARγ stimulation prevented activation of two GTPases, Rac1 and RhoA, which correlated with decreased monocyte adhesion to and migration across brain endothelium. Relevant to HIV-1 neuropathogenesis, enhanced adhesion and migration of HIV-1 infected monocytes across the BBB were significantly reduced when BMVEC were treated with PPARγ agonist. These findings indicate that Rac1 and RhoA inhibition by PPARγ agonists could be a new approach for treatment of neuroinflammation by preventing monocyte migration across the BBB.


Journal of Neurochemistry | 2007

Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release

James Haorah; Bryan Knipe; Santhi Gorantla; Jialin Zheng; Yuri Persidsky

The blood–brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5‐triphosphate receptor (IP3R)‐operated intracellular calcium (Ca2+) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP3R protein and IP3R‐gated intracellular Ca2+ release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP3R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP3R‐gated intracellular Ca2+ release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro‐inflammatory disorders promoting leukocyte migration across the BBB.


Glia | 2008

Activation of Protein Tyrosine Kinases and Matrix Metalloproteinases Causes Blood-Brain Barrier Injury: Novel Mechanism for Neurodegeneration Associated with Alcohol Abuse

James Haorah; Kathy Schall; Servio H. Ramirez; Yuri Persidsky

Blood‐brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Activation of matrix metalloproteinases (MMPs) and alteration of basement membrane (BM) associated with BBB injury was documented in stroke patients. While chronic alcoholism is a risk factor for developing stroke, underlying mechanisms are not well understood. We hypothesized that ethanol (EtOH)‐induced protein tyrosine kinase (PTK) signaling resulted a loss of BBB integrity via MMPs activation and degradation of BM component, collagen IV. Treatment of BMVEC with EtOH or acetaldehyde (AA) for 2–48 h increased MMP‐1, ‐2 and ‐9 activities or decreased the levels of tissue inhibitors of MMPs (TIMP‐1, ‐2) in a PTK‐dependent manner without affecting protein tyrosine phosphatase activity. Enhanced PTK activity after EtOH exposure correlated with increased phosphorylated proteins of selective receptor and nonreceptor PTKs. Up‐regulation of MMPs activities and protein contents paralleled a decrease in collagen IV content, and inhibitors of EtOH metabolism, MMP‐2 and ‐9, or PTK reversed all these effects. Using human BMVEC assembled into BBB models, we found that EtOH/AA diminished barrier tightness, augmented permeability, and monocyte migration across the BBB via activation of PTKs and MMPs. These findings suggest that alcohol associated BBB injury could be mediated by MMPs via BM protein degradation and could serve as a comorbidity factor for neurological disorders like stroke or neuroinflammation. Furthermore, our preliminary experiments indicated that human astrocytes secreted high levels of MMP‐1 and ‐9 following exposure to EtOH, suggesting the role of BM protein degradation and BBB compromise as a result of glial activation by ethanol. These results provide better understanding of multifaceted effects of alcohol on the brain and could help develop new therapeutic interventions.

Collaboration


Dive into the James Haorah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saleena Alikunju

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam M. Szlachetka

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

P. M. Abdul Muneer

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sidney S. Mirvish

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Terrence M. Donohue

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bryan Knipe

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

David Heilman

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lin Zhou

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Servio H. Ramirez

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge