P. M. Abdul Muneer
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. M. Abdul Muneer.
Molecular Neurodegeneration | 2011
P. M. Abdul Muneer; Saleena Alikunju; Adam M. Szlachetka; L. Charles Murrin; James Haorah
BackgroundMethamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date.ResultsIn this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM) increased the expression of glucose transporter protein-1 (GLUT1) in primary human brain endothelial cell (hBEC, main component of BBB) without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB) aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function.ConclusionOur findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.
Free Radical Biology and Medicine | 2010
Travis J. Rump; P. M. Abdul Muneer; Adam M. Szlachetka; Allyson Lamb; Catherine Haorei; Saleena Alikunju; Huangui Xiong; James Keblesh; Jianuo Liu; Matthew C. Zimmerman; Jocelyn Jones; Terrence M. Donohue; Yuri Persidsky; James Haorah
The studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to mice caused an increase in inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine adduct formation in frontal cortical neurons but not in astrocytes from brains of these animals. Interestingly, alcohol administration caused a rather selective activation of NADPH oxidase (NOX), which, in turn, enhanced levels of reactive oxygen species (ROS) and 4-hydroxynonenal, but these were predominantly localized in astrocytes and microglia. Oxidative damage in glial cells was accompanied by their pronounced activation (astrogliosis) and coincident neuronal loss, suggesting that inflammation in glial cells caused neuronal degeneration. Immunohistochemistry studies indicated that alcohol consumption induced different oxidative mediators in different brain cell types. Thus, nitric oxide was mostly detected in iNOS-expressing neurons, whereas ROS were predominantly generated in NOX-expressing glial cells after alcohol ingestion. Assessment of neuronal activity in ex vivo frontal cortical brain tissue slices from ethanol-fed mice showed a reduction in long-term potentiation synaptic transmission compared with slices from controls. Coadministration of ALC with alcohol showed a significant reduction in oxidative damage and neuronal loss and a restoration of synaptic neurotransmission in this brain region, suggesting that ALC protects brain cells from ethanol-induced oxidative injury. These findings suggest the potential clinical utility of ALC as a neuroprotective agent that prevents alcohol-induced brain damage and development of neurological disorders.
Molecular Biology Reports | 2009
P. M. Abdul Muneer; A Gopalakrishnan; K. K. Musammilu; Vindhya Mohindra; Kuldeep K. Lal; V. S. Basheer; W. S. Lakra
Random amplified polymorphic DNA (RAPD) and microsatellite markers were applied to evaluate the genetic variation in endemic and endangered yellow catfish, Horabagrusbrachysoma sampled from three geographic locations of Western Ghat, South India river systems. In RAPD, of 32 10-mer RAPD primers screened initially, 10 were chosen and used in a comparative analysis of H. brachysoma collected from Meenachil, Chalakkudy and Nethravathi River systems. Of the 124 total RAPD fragments amplified, 49 (39.51%) were found to be shared by individuals of all 3 populations. The remaining 75 fragments were found to be polymorphic (60.48%). In microsatellites, six polymorphic microsatellite loci were identified by using primers developed for Pangasiushypophthalmus, Clariasmacrocephalus and Clariasgariepinus. The identified loci were confirmed as microsatellite by sequencing after making a clone. The nucleotide sequences of 6 loci were published in NCBI genbank. The number of alleles across the six loci ranged from 4 to 7 and heterozygosities ranged from 0.07 to 0.93. The mean number of alleles and effective number of alleles per locus were 5.00 and 3.314, respectively. The average heterozygosity across all investigated samples was 0.72, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods reported a high degree of gene diversity and genetic distances depicted by UPGMA dendrograms among the populations of H. brachysoma.
Brain Behavior and Immunity | 2011
Saleena Alikunju; P. M. Abdul Muneer; Yan Zhang; Adam M. Szlachetka; James Haorah
Microvessels, the main components of the blood-brain barrier (BBB) are vulnerable to oxidative damage during alcohol-induced stress. Alcohol produces oxidative damage within the vessels and in the brain. Using our animal model of catheter implant into the common carotid artery (CCA), we trace the footprints of alcohol-induced oxidative damage and inflammatory process at the BBB and into the brain. The uniqueness of the finding is that ethanol causes oxidative damage in all neurovascular components by activating NADPH oxidase and inducible nitric oxide synthase in the brain. It is not the oxidants but the ethanol that traverses through the BBB because we found that the highly reactive peroxynitrite does not cross the BBB. Thus, oxidative damage is caused at the site of oxidant production in the microvessels and in the brain. Our data indicate that acetaldehyde (the primary metabolite of ethanol) is the inducer/activator of these enzymes that generate oxidants in brain neurovascular cells. Evidence for alcohol-induced BBB damage is indicated by the alterations of the tight junction protein occludin in intact microvessels. Importantly, we demonstrate that the site of BBB oxidative damage is also the site of immune cells aggregation in the microvessels, which paves the path for inflammatory footprints. These findings reveal the underlying mechanisms that ethanol-elicited BBB oxidative damage initiates the brain vascular inflammatory process, which ultimately leads to neuroinflammation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2012
P. M. Abdul Muneer; Saleena Alikunju; Adam M. Szlachetka; James Haorah
Objective—Blood-brain barrier (BBB) dysfunction caused by activation of matrix metalloproteinases (MMPs) is a pathological feature in vascular/neurological disease. We describe the mechanisms of BBB dysfunction and neuroinflammation as a result of MMP-3/9 activation and disruption of vascular endothelial growth factor (VEGF)-A/VEGFR-2 interaction, impairing effective angiogenesis. Methods and Results—We investigate the hypothesis in human brain endothelial cells and animal model of chronic alcohol ingestion. Proteome array analysis, zymography, immunofluorescence, and Western blotting techniques detected the activation, expression, and levels of MMP-3 and MMP-9. We found that degradation of VEGFR-2 and BBB proteins, for example, occludin, claudin-5, and ZO-1 by MMP-3/9, causes rupture of capillary endothelium and BBB leakiness. Impairment of BBB integrity was demonstrated by increased permeability of dye tracers and Fluo-3/calcein-AM–labeled monocyte adhesion or infiltration and decrease in transendothelial electric resistance. Alcohol-induced degradation of endothelial VEGFR-2 by MMP-3/9 led to a subsequent elevation of cellular/serum VEGF-A level. The decrease in VEGFR-2 with subsequent increase in VEGF-A level led to apoptosis and neuroinflammation via the activation of caspase-1 and IL-1&bgr; release. The use of MMPs, VEGFR-2, and caspase-1 inhibitors helped to dissect the underlying mechanisms. Conclusion—Alcohol-induced MMPs activation is a key mechanism for dysfunction of BBB via degradation of VEGFR-2 protein and activation of caspase-1 or IL-1&bgr; release. Targeting VEGF-induced MMP-3/9 activation can be a novel preventive approach to vascular inflammatory disease in alcohol abuse.
PLOS ONE | 2011
P. M. Abdul Muneer; Saleena Alikunju; Adam M. Szlachetka; James Haorah
Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers.
Psychopharmacology | 2011
P. M. Abdul Muneer; Saleena Alikunju; Adam M. Szlachetka; James Haorah
PurposeEvidence shows that alcohol intake causes oxidative neuronal injury and neurocognitive deficits that are distinct from the classical Wernicke-Korsakoff neuropathy. Our previous findings indicated that alcohol-elicited blood-brain barrier (BBB) damage leads to neuroinflammation and neuronal loss. The dynamic function of the BBB requires a constant supply and utilization of glucose. Here we examined whether interference of glucose uptake and transport at the endothelium by alcohol leads to BBB dysfunction and neuronal degeneration.Material and methodsWe tested the hypothesis in cell culture of human brain endothelial cells, neurons and alcohol intake in animal by immunofluorescence, Western blotting and glucose uptake assay methods.ResultsWe found that decrease in glucose uptake correlates the reduction of glucose transporter protein 1 (GLUT1) in cell culture after 50 mM ethanol exposure. Decrease in GLUT1 protein levels was regulated at the translation process. In animal, chronic alcohol intake suppresses the transport of glucose into the frontal and occipital regions of the brain. This finding is validated by a marked decrease in GLUT1 protein expression in brain microvessel (the BBB). In parallel, alcohol intake impairs the BBB tight junction proteins occludin, zonula occludens-1, and claudin-5 in the brain microvessel. Permeability of sodium fluorescein and Evans Blue confirms the leakiness of the BBB. Further, depletion of trans-endothelial electrical resistance of the cell monolayer supports the disruption of BBB integrity. Administration of acetyl-l-carnitine (a neuroprotective agent) significantly prevents the adverse effects of alcohol on glucose uptake, BBB damage and neuronal degeneration.ConclusionThese findings suggest that alcohol-elicited inhibition of glucose transport at the blood-brain interface leads to BBB malfunction and neurological complications.
Molecular Biotechnology | 2010
Sandeep Sen; Reby Skaria; P. M. Abdul Muneer
The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation.
Molecular Biology Reports | 2011
P. M. Abdul Muneer; A Gopalakrishnan; Remya Shivanandan; V. S. Basheer; A. G. Ponniah
The two species of yellow catfish, Horabagrus brachysoma and H. nigricollaris are categorized as ‘endangered’ and ‘critically endangered’ respectively in their wild habitat. Proper knowledge of genetic structure and variability of these endangered species are highly essential for the management, conservation and improvement of fish stocks. Therefore, genetic variation and phylogenetic relationships between these species of yellow catfish sampled from Chalakkudy River in the hot spot of biodiversity-Western Ghats region, Kerala, India were analyzed by using Random amplified polymorphic DNA (RAPD) and microsatellite markers. 85 RAPD and five microsatellites loci were detected to analyze the genetic variation and phylogenetic relationships among these species. Out of 85 RAPD loci produced only 52.94% were polymorphic whereas in microsatellite, all 5 loci were polymorphic (100%). Species-specific RAPD bands were found in both species studied. In microsatellite, the number of alleles across the five loci ranged from 1 to 8. The observed heterozygosities in H. brachysoma and H. nigricollaris were 0.463 and 0.443, respectively. Here, both RAPD and microsatellite methods reported a low degree of gene diversity and lack of genetic heterogeneity in both species of Horabagrus which strongly emphasize the need of fishery management, conservation and rehabilitation of these species.
Biochemical Genetics | 2011
P. M. Abdul Muneer; Remya Sivanandan; A Gopalakrishnan; V. S. Basheer; K. K. Musammilu; A. G. Ponniah
Random-amplified polymorphic DNA (RAPD) and microsatellite markers were developed and used for the analysis of genetic variability in the critically endangered yellow catfish Horabagrus nigricollaris, sampled from the Chalakkudy River, Kerala, India. Eight RAPD and five microsatellite markers were detected to genotype the species. In RAPD, the 73 fragments were 20.55% polymorphic, whereas 4 polymorphic loci (80%) were obtained in microsatellites. In microsatellites, the number of alleles across the 5 loci was 1–5, and the range of heterozygosity was 0.25–0.5. The mean observed number of alleles was 2.4, and the effective number was 1.775 per locus. The average heterozygosity across all investigated samples was 0.29, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods report a low degree of gene diversity and lack of genetic heterogeneity in the population of H. nigricollaris, emphasizing the need for fishery management, conservation, and rehabilitation of this species.