Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Hartwell is active.

Publication


Featured researches published by James Hartwell.


Science | 2010

The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science

Erika J. Edwards; Colin P. Osborne; Caroline A.E. Strömberg; Stephen A. Smith; William J. Bond; Pascal-Antoine Christin; Asaph B. Cousins; Melvin R. Duvall; David L. Fox; Robert P. Freckleton; James Hartwell; Yongsong Huang; Christine M. Janis; Jon E. Keeley; Elizabeth A. Kellogg; Alan K. Knapp; Andrew D. B. Leakey; David M. Nelson; Jeffery M. Saarela; Rowan F. Sage; Osvaldo E. Sala; Nicolas Salamin; Christopher J. Still; Brett J. Tipple

Grassland Emergence The evolution of the C4 photosynthetic pathway from the ancestral C3 pathway in grasses led to the establishment of grasslands in warm climates during the Late Miocene (8 to 3 million years ago). This was a major event in plant evolutionary history, and their high rates of foliage production sustained high levels of herbivore consumption. The past decade has seen significant advances in understanding C4 grassland ecosystem ecology, and now a wealth of data on the geological history of these ecosystems has accumulated and the phylogeny of grasses is much better known. Edwards et al. (p. 587) review this multidisciplinary research area and attempt to synthesize emerging knowledge about the evolution of grass species within the context of plant and ecosystem ecology. The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.


Journal of Experimental Botany | 2009

Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands

Anne M. Borland; Howard Griffiths; James Hartwell; J. Andrew C. Smith

Crassulacean acid metabolism (CAM) is a photosynthetic adaptation that facilitates the uptake of CO(2) at night and thereby optimizes the water-use efficiency of carbon assimilation in plants growing in arid habitats. A number of CAM species have been exploited agronomically in marginal habitats, displaying annual above-ground productivities comparable with those of the most water-use efficient C(3) or C(4) crops but with only 20% of the water required for cultivation. Such attributes highlight the potential of CAM plants for carbon sequestration and as feed stocks for bioenergy production on marginal and degraded lands. This review highlights the metabolic and morphological features of CAM that contribute towards high biomass production in water-limited environments. The temporal separation of carboxylation processes that underpins CAM provides flexibility for modulating carbon gain over the day and night, and poses fundamental questions in terms of circadian control of metabolism, growth, and productivity. The advantages conferred by a high water-storage capacitance, which translate into an ability to buffer fluctuations in environmental water availability, must be traded against diffusive (stomatal plus internal) constraints imposed by succulent CAM tissues on CO(2) supply to the cellular sites of carbon assimilation. The practicalities for maximizing CAM biomass and carbon sequestration need to be informed by underlying molecular, physiological, and ecological processes. Recent progress in developing genetic models for CAM are outlined and discussed in light of the need to achieve a systems-level understanding that spans the molecular controls over the pathway through to the agronomic performance of CAM and provision of ecosystem services on marginal lands.


Plant Physiology | 2005

Conservation and Divergence of Circadian Clock Operation in a Stress-Inducible Crassulacean Acid Metabolism Species Reveals Clock Compensation against Stress

Susanna F. Boxall; Jonathan M. Foster; Hans J. Bohnert; John C. Cushman; Hugh G. Nimmo; James Hartwell

One of the best-characterized physiological rhythms in plants is the circadian rhythm of CO2 metabolism in Crassulacean acid metabolism (CAM) plants, which is the focus here. The central components of the plant circadian clock have been studied in detail only in Arabidopsis (Arabidopsis thaliana). Full-length cDNAs have been obtained encoding orthologs of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), EARLY FLOWERING4 (ELF4), ZEITLUPE (ZTL), FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), EARLY FLOWERING3 (ELF3), and a partial cDNA encoding GIGANTEA in the model stress-inducible CAM plant, Mesembryanthemum crystallinum (Common Ice Plant). TOC1 and LHY/CCA1 are under reciprocal circadian control in a manner similar to their regulation in Arabidopsis. ELF4, FKF1, ZTL, GIGANTEA, and ELF3 are under circadian control in C3 and CAM leaves. ELF4 transcripts peak in the evening and are unaffected by CAM induction. FKF1 shows an abrupt transcript peak 3 h before subjective dusk. ELF3 transcripts appear in the evening, consistent with their role in gating light input to the circadian clock. Intriguingly, ZTL transcripts do not oscillate in Arabidopsis, but do in M. crystallinum. The transcript abundance of the clock-associated genes in M. crystallinum is largely unaffected by development and salt stress, revealing compensation of the central circadian clock against development and abiotic stress in addition to the well-known temperature compensation. Importantly, the clock in M. crystallinum is very similar to that in Arabidopsis, indicating that such a clock could control CAM without requiring additional components of the central oscillator or a novel CAM oscillator.


Current Biology | 2012

Adaptive Evolution of C4 Photosynthesis through Recurrent Lateral Gene Transfer

Pascal-Antoine Christin; Erika J. Edwards; Guillaume Besnard; Susanna F. Boxall; R. Gregory; Elizabeth A. Kellogg; James Hartwell; Colin P. Osborne

C(4) photosynthesis is a complex trait that confers higher productivity under warm and arid conditions. It has evolved more than 60 times via the co-option of genes present in C(3) ancestors followed by alteration of the patterns and levels of expression and adaptive changes in the coding sequences, but the evolutionary path to C(4) photosynthesis is still poorly understood. The grass lineage Alloteropsis offers unparalleled opportunities for studying C(4) evolution, because it includes a C(3) taxon and five C(4) species that vary significantly in C(4) anatomy and biochemistry. Using phylogenetic analyses of nuclear genes and leaf transcriptomes, we show that fundamental elements of the C(4) pathway in the grass lineage Alloteropsis were acquired via a minimum of four independent lateral gene transfers from C(4) taxa that diverged from this group more than 20 million years ago. The transfer of genes that were already fully adapted for C(4) function has occurred periodically over at least the last 10 million years and has been a recurrent source for the optimization of the C(4) pathway. This report shows that plant-plant lateral nuclear gene transfers can be a potent source of genetic novelty and adaptation in flowering plants.


Plant Journal | 2009

Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants

Peter D. Gould; Patrick Diaz; Claire Hogben; Jelena Kusakina; Radia Salem; James Hartwell; Anthony Hall

The plant circadian clock plays an important role in enhancing performance and increasing vegetative yield. Much of our current understanding of the mechanism and function of the plant clock has come from the development of Arabidopsis thaliana as a model circadian organism. Key to this rapid progress has been the development of robust circadian markers, specifically circadian-regulated luciferase reporter genes. Studies of the clock in crop species and non-model organisms are currently hindered by the absence of a simple high-throughput universal assay for clock function, accuracy and robustness. Delayed fluorescence (DF) is a fundamental process occurring in all photosynthetic organisms. It is luminescence-produced post-illumination due to charge recombination in photosystem II (PSII) leading to excitation of P680 and the subsequent emission of a photon. Here we report that the amount of DF oscillates with an approximately 24-h period and is under the control of the circadian clock in a diverse selection of plants. Thus, DF provides a simple clock output that may allow the clock to be assayed in vivo in any photosynthetic organism. Furthermore, our data provide direct evidence that the nucleus-encoded, three-loop circadian oscillator underlies rhythms of PSII activity in the chloroplast. This simple, high-throughput and non-transgenic assay could be integrated into crop breeding programmes, the assay allows the selection of plants that have robust and accurate clocks, and possibly enhanced performance and vegetative yield. This assay could also be used to characterize rapidly the role and function of any novel Arabidopsis circadian mutant.


New Phytologist | 2015

A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

Xiaohan Yang; John C. Cushman; Anne M. Borland; Erika J. Edwards; Stan D. Wullschleger; Gerald A. Tuskan; Nick A. Owen; Howard Griffiths; J. Andrew C. Smith; Henrique Cestari De Paoli; David J. Weston; Robert W. Cottingham; James Hartwell; Sarah C. Davis; Katia Silvera; Ray Ming; Karen Schlauch; Paul E. Abraham; J. Ryan Stewart; Hao Bo Guo; Rebecca L. Albion; Jungmin Ha; Sung Don Lim; Bernard Wone; Won Cheol Yim; Travis Garcia; Jesse A. Mayer; Juli Petereit; Sujithkumar Surendran Nair; Erin Casey

Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.


Genome Biology and Evolution | 2013

Parallel recruitment of multiple genes into c4 photosynthesis.

Pascal-Antoine Christin; Susanna F. Boxall; R. Gregory; Erika J. Edwards; James Hartwell; Colin P. Osborne

During the diversification of living organisms, novel adaptive traits usually evolve through the co-option of preexisting genes. However, most enzymes are encoded by gene families, whose members vary in their expression and catalytic properties. Each may therefore differ in its suitability for recruitment into a novel function. In this work, we test for the presence of such a gene recruitment bias using the example of C4 photosynthesis, a complex trait that evolved recurrently in flowering plants as a response to atmospheric CO2 depletion. We combined the analysis of complete nuclear genomes and high-throughput transcriptome data for three grass species that evolved the C4 trait independently. For five of the seven enzymes analyzed, the same gene lineage was recruited across the independent C4 origins, despite the existence of multiple copies. The analysis of a closely related C3 grass confirmed that C4 expression patterns were not present in the C3 ancestors but were acquired during the evolutionary transition to C4 photosynthesis. The significant bias in gene recruitment indicates that some genes are more suitable for a novel function, probably because the mutations they accumulated brought them closer to the characteristics required for the new function.


Biochemical Society Transactions | 2005

The co-ordination of central plant metabolism by the circadian clock.

James Hartwell

A circadian clock optimizes many aspects of plant biology relative to the light/dark cycle. One example is the circadian control of primary metabolism and CO2 fixation in plants that carry out a metabolic adaptation of photosynthesis called CAM (crassulacean acid metabolism). These plants perform primary CO2 fixation at night using the enzyme phosphoenolpyruvate carboxylase and exhibit a robust rhythm of CO2 fixation under constant conditions. Transcriptomic analysis has revealed that many genes encoding enzymes in primary metabolic pathways such as glycolysis and starch metabolism are under the control of the circadian clock in CAM plants. These transcript changes are accompanied by changes in metabolite levels associated with flux through these pathways. The molecular basis for the circadian control of CAM remains to be elucidated. Current research is focusing on the identity of the CAM central oscillator and the output pathway that links the central oscillator to the control of plant metabolism.


Planta | 1996

Recycling of carbon in the oxidative pentose phosphate pathway in non-photosynthetic plastids

James Hartwell; C.G. Bowsher; Michael J. Emes

Recycling of carbon in the oxidative pentose phosphate pathway (OPPP) of intact pea root plastids has been studied. The synthesis of dihydroxyacetone phosphate (DHAP) and evolution of CO2 was followed in relation to nitrite reduction. A close coupling was observed between all three measured fluxes which were linear for up to 60 min and dependent upon the integrity of the plastids. However, the quantitative relationship between 1-14CO2 evolution from glucose 6-phosphate and nitrite reduction varied with available hexose phosphate concentration. When 10 mM glucose 6-phosphate was supplied to intact plastids a stoichiometry of 1.35 was observed between 14CO2 evolution and nitrite reduction. As exogenous glucose 6-phosphate was decreased this value fell, becoming 0.47 in the presence of 0.2 mM glucose 6-phosphate, indicative of considerable recycling of carbon. This conclusion was reinforced when using [2-14C]glucose-6-phosphate. The measured release of 2-14CO2 was consistent with the data for 1-14CO2, suggesting complete recycling of carbon in the OPPP. Ribose 5-phosphate was also able to support nitrite reduction and DHAP production. A stoichiometry of 2 NO2−reduced: 1 DHAP synthesised was observed at concentrations of 1 mM ribose 5-phosphate or less. At concentrations of ribose 5-phosphate greater than 1 mM this stoichiometry was lost as a result of enhanced DHAP synthesis without further increase in nitrite reduction. It is suggested that this decoupling from nitrite reduction is a function of excess substrate entering directly into the non-oxidative reactions of the OPPP, and may be useful when the demand for OPPP products is not linked to the demand for reductant. The significance of recycling in the OPPP is discussed in relation to the coordination of nitrate assimilation with carbohydrate oxidation in roots and with the utilisation of carbohydrate by other pathways within plastids.


Plant Physiology | 2003

Structure and Expression of Phosphoenolpyruvate Carboxylase Kinase Genes in Solanaceae. A Novel Gene Exhibits Alternative Splicing

Justin T. Marsh; Stuart Sullivan; James Hartwell; Hugh G. Nimmo

Phosphorylation of phosphoenolpyruvate carboxylase (PEPc; EC 4.1.1.31) plays an important role in the control of central metabolism in higher plants. Two PPCK (PEPc kinase) genes have been identified in tomato (Lycopersicon esculentum cv Alicante), hereafter termed LePPCK1 and LePPCK2. The function of the gene products has been confirmed by transcription of full-length cDNAs, translation, and in vitro assay of kinase activity. Previously studied PPCK genes contain a single intron. LePPCK2 also contains a novel second intron that exhibits alternative splicing. The correctly spliced transcript encodes a functional PEPc kinase, whereas unspliced or incorrectly spliced transcripts encode a truncated, inactive protein. The relative abundance of the transcripts depends on tissue and conditions. Expression of LePPCK2 was markedly increased during fruit ripening. In ripe Alicante fruit, the locule and seeds contained only the correctly spliced LePPCK2 transcripts, whereas in ripe fruit of the tomato greenflesh mutant, they contained correctly and incorrectly spliced transcripts. Potato (Solanum tuberosum) contains genes that are very similar to LePPCK1, and LePPCK2; StPPCK2 exhibits alternative splicing. Aubergine (Solanum melongena) and tobacco (Nicotiana tabacum) also contain a PPCK2 gene; the sequence of the alternatively spliced intron is highly conserved between all four species. The data suggest that the two PPCK genes have different roles in tissue-specific regulation of PEPc and that the alternative splicing of PPCK2 transcripts is functionally significant.

Collaboration


Dive into the James Hartwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Hall

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaohan Yang

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge