Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Iocozzia is active.

Publication


Featured researches published by James Iocozzia.


Energy and Environmental Science | 2017

Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation

Xueqin Liu; James Iocozzia; Yang Wang; Xun Cui; Yihuang Chen; Shiqiang Zhao; Zhen Li; Zhiqun Lin

The controlled synthesis of nanohybrids composed of noble metals (Au, Ag, Pt and Pd, as well as AuAg alloy) and metal oxides (ZnO, TiO2, Cu2O and CeO2) have received considerable attention for applications in photocatalysis, solar cells, drug delivery, surface enhanced Raman spectroscopy and many other important areas. The overall architecture of nanocomposites is one of the most important factors dictating the physical properties of nanohybrids. Noble metals can be coupled to metal oxides to yield diversified nanostructures, including noble metal decorated-metal oxide nanoparticles (NPs), nanoarrays, noble metal/metal oxide core/shell, noble metal/metal oxide yolk/shell and Janus noble metal–metal oxide nanostructures. In this review, we focus on the significant advances in tailored nanostructures of noble metal–metal oxide nanohybrids. The improvement in performance in the representative solar energy conversion applications including photocatalytic degradation of organic pollutants, photocatalytic hydrogen generation, photocatalytic CO2 reduction, dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are discussed. Finally, we conclude with a perspective on the future direction and prospects of these controllable nanohybrid materials.


Advanced Science | 2016

Plasmon‐Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites

Mengye Wang; Meidan Ye; James Iocozzia; Changjian Lin; Zhiqun Lin

Plasmonics has remained a prominent and growing field over the past several decades. The coupling of various chemical and photo phenomenon has sparked considerable interest in plasmon‐mediated photocatalysis. Given plasmonic photocatalysis has only been developed for a relatively short period, considerable progress has been made in improving the absorption across the full solar spectrum and the efficiency of photo‐generated charge carrier separation. With recent advances in fundamental (i.e., mechanisms) and experimental studies (i.e., the influence of size, geometry, surrounding dielectric field, etc.) on plasmon‐mediated photocatalysis, the rational design and synthesis of metal/semiconductor hybrid nanostructure photocatalysts has been realized. This review seeks to highlight the recent impressive developments in plasmon‐mediated photocatalytic mechanisms (i.e., Schottky junction, direct electron transfer, enhanced local electric field, plasmon resonant energy transfer, and scattering and heating effects), summarize a set of factors (i.e., size, geometry, dielectric environment, loading amount and composition of plasmonic metal, and nanostructure and properties of semiconductors) that largely affect plasmonic photocatalysis, and finally conclude with a perspective on future directions within this rich field of research.


Angewandte Chemie | 2016

Germanium-Based Nanomaterials for Rechargeable Batteries.

Songping Wu; Cuiping Han; James Iocozzia; Mingjia Lu; Rongyun Ge; Rui Xu; Zhiqun Lin

Germanium-based nanomaterials have emerged as important candidates for next-generation energy-storage devices owing to their unique chemical and physical properties. In this Review, we provide a review of the current state-of-the-art in germanium-based materials design, synthesis, processing, and application in battery technology. The most recent advances in the area of Ge-based nanocomposite electrode materials and electrolytes for solid-state batteries are summarized. The limitations of Ge-based materials for energy-storage applications are discussed, and potential research directions are also presented with an emphasis on commercial products and theoretical investigations.


Journal of Materials Chemistry | 2017

A highly stable non-noble metal Ni2P co-catalyst for increased H2 generation by g-C3N4 under visible light irradiation

Ping Ye; Xinling Liu; James Iocozzia; Yupeng Yuan; Lina Gu; Gengsheng Xu; Zhiqun Lin

Nickel phosphide (Ni2P) was grown on a graphitic carbon nitride (g-C3N4) surface by annealing a mixture of g-C3N4, NiCl2, and NaH2PO2 at 400 °C for 2 h in an Ar atmosphere. During the annealing, Ni2P particles formed intimate interfaces with g-C3N4. As a result, charge transfer from photo-excited g-C3N4 to Ni2P was improved as demonstrated by the improved photocatalytic H2 generation (40.5 μmol h−1 g−1) compared to a physical mixture of Ni2P and g-C3N4 (trace H2 generation). Under optimal and identical experimental conditions, the H2 production rate on Ni2P-loaded g-C3N4 (2 wt%) is 82.5 μmol h−1 g−1, which is higher than that of Pt-loaded g-C3N4 (0.5 wt%) (72 μmol h−1 g−1). Impressively, Ni2P shows a highly stable H2 production activity despite being a non-noble metal co-catalyst. No activity loss occurs over repeated use and 24 h long-term H2 generation trials. In contrast, a pronounced reduction in H2 generation was observed for Pt-loaded g-C3N4 (0.5 wt%) over the same 24 hour trial period. Among their many advantages, including non-toxicity, low cost and natural abundance, Ni2P/g-C3N4 composites are a promising alternative for realizing efficient, long-lasting photocatalytic H2 production.


Nanoscale | 2013

Block copolymer/ferroelectric nanoparticle nanocomposites

Xinchang Pang; Yanjie He; Beibei Jiang; James Iocozzia; Lei Zhao; Hanzheng Guo; Jin Liu; Mufit Akinc; Nicola Bowler; Xiaoli Tan; Zhiqun Lin

Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.


Small | 2017

Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO2 Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors

Jingsheng Cai; Jianying Huang; Mingzheng Ge; James Iocozzia; Zhiqun Lin; Ke-Qin Zhang; Yuekun Lai

Inspired by mussel-adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self-polymerization process of dopamine is time-consuming and the coatings of PDA are not reusable. Herein, a reusable and time-saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron-hole pairs generated from photo-electrocatalysis and transfer the captured electrons to participate in the photo-electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as-prepared Pt@TiO2 NTA composites exhibit surface-enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV-assisted self-cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel-inspired electropolymerization strategy and the fast EPD-reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.


Energy and Environmental Science | 2018

Graphene aerogels for efficient energy storage and conversion

Jiajun Mao; James Iocozzia; Jianying Huang; Kai Meng; Yuekun Lai; Zhiqun Lin

Concerns over air quality reduction resulting from burning fossil fuels have driven the development of clean and renewable energy sources. Supercapacitors, batteries and solar cells serve as eco-friendly energy storage and conversion systems vitally important for the sustainable development of human society. However, many diverse elements influence the performance of energy storage and conversion systems. The overall efficiency of systems depends on the specific structure and properties of incorporated functional materials. Carbon materials, such as graphene, are especially promising for materials development in the energy storage and conversion fields. Graphene, a two-dimensional (2D) carbon material only a single atom thick, has massless Dirac fermions (electron transport is governed by Diracs equation), displays outstanding electrical conductivity, superior thermal conductivity and excellent mechanical properties. 2D free-standing graphene films and powders have paved the way for promising energy applications. Recently, much effort has been spent trying to improve the number of active sites in electrode materials within 3D network/aerogel structures derived from graphene. This is because graphene aerogels are promising materials for energy systems due to their porous hierarchical structure which affords rapid electron/ion transport, superior chemical and physical stability, and good cycle performance. This review aims to summarize the synthetic methods, mechanistic aspects, and energy storage and conversion applications of novel 3D network graphene, graphene derivatives and graphene-based materials. Areas of application include supercapacitors, Li-batteries, H2 and thermal energy storage, fuel cells and solar cells.


Angewandte Chemie | 2018

From Precision Synthesis of Block Copolymers to Properties and Applications of Nanoparticles

Xiao Li; James Iocozzia; Yihuang Chen; Shiqiang Zhao; Xun Cui; Wei Wang; Haifeng Yu; Shaoliang Lin; Zhiqun Lin

Inorganic nanoparticles have become a research focus in numerous fields because of their unique properties that distinguish them from their bulk counterparts. Controlling the size and shape of nanoparticles is an essential aspect of nanoparticle synthesis. Preparing inorganic nanoparticles by using block copolymer templates is one of the most reliable routes for tuning the size and shape of nanoparticles with a high degree of precision. In this Review, we discuss recent progress in the design of block copolymer templates for crafting spherical inorganic nanoparticles including compact, hollow, and core-shell varieties. The templates are divided into two categories: micelles self-assembled from linear block copolymers and unimolecular star-shaped block copolymers. The precise control over the size and morphology of nanoparticles is highlighted as well as the useful properties and applications of such inorganic nanoparticles.


Angewandte Chemie | 2018

Scrutinizing Defects and Defect Density of Selenium-Doped Graphene for High-Efficiency Triiodide Reduction in Dye-Sensitized Solar Cells

Xiangtong Meng; Xuedan Song; James Iocozzia; Jiafu Hong; Matthew Rager; Huile Jin; Shun Wang; Longlong Huang; Jieshan Qiu; Zhiqun Lin

Understanding the impact of the defects/defect density of electrocatalysts on the activity in the triiodide (I3- ) reduction reaction of dye-sensitized solar cells (DSSCs) is indispensable for the design and construction of high-efficiency counter electrodes (CEs). Active-site-enriched selenium-doped graphene (SeG) was crafted by ball-milling followed by high-temperature annealing to yield abundant edge sites and fully activated basal planes. The density of defects within SeG can be tuned by adjusting the annealing temperature. The sample synthesized at an annealing temperature of 900 °C exhibited a superior response to the I3- reduction with a high conversion efficiency of 8.42 %, outperforming the Pt reference (7.88 %). Improved stability is also observed. DFT calculations showed the high catalytic activity of SeG over pure graphene is a result of the reduced ionization energy owing to incorporation of Se species, facilitating electron transfer at the electrode-electrolyte interface.


Langmuir | 2016

Solution-Stable Colloidal Gold Nanoparticles via Surfactant-Free, Hyperbranched Polyglycerol-b-polystyrene Unimolecular Templates

James Iocozzia; Zhiqun Lin

Hyperbranched polyglycerol-block-polystyrene copolymers, denoted HPG-b-PS, are synthesized and employed as a new and effective unimolecular template for synthesizing colloidal gold (Au) nanoparticles. The coordination of noble metal precursors with polyether within the inner HPG core and subsequent in situ reduction enables the formation of well-dispersed and stable PS-capped Au nanoparticles. The inner HPG core is produced via ring opening multibranching polymerization (ROMBP) and subsequently converted into atom transfer radical polymerization (ATRP) macroinitiators for the controlled growth of polystyrene (PS) arms possessing low polydispersity (PDI < 1.31). An initial investigation into the templating parameters of HPG-b-PS was undertaken by producing templates with different arm numbers (98 and 117) and different PS chain lengths (i.e., molecular weight = 3500-13400 g/mol). It was found that the PS chain length and solvent conditions affect the quality of the resulting PS-capped colloidal Au nanoparticles. This work demonstrates, for the first time, a simple, lower-cost approach for templating nonpolar solvent-soluble PS-capped Au nanoparticles on the order of 10-30 nm in diameter.

Collaboration


Dive into the James Iocozzia's collaboration.

Top Co-Authors

Avatar

Zhiqun Lin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiqiang Zhao

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cuiping Han

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beibei Jiang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mengye Wang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xun Cui

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mingjia Lu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rongyun Ge

South China University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge