James J. Choi
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James J. Choi.
Urology | 2000
James J. Choi; Igor Shendrik; Monica Peacocke; Donna M. Peehl; Ralph Buttyan; Edward F. Ikeguchi; Aaron E. Katz; Mitchell C. Benson
OBJECTIVES Cellular senescence is a unique cellular response pathway thought to be closely associated with the aging process. The senescent phenotype is characterized by the loss of a cells ability to respond to proliferative and apoptotic stimuli even while normal metabolic activity and vitality is maintained. Recently, a novel biomarker, senescent-associated beta-galactosidase (SA-beta-gal), was found to identify cells with the senescent phenotype. In the present study, we examined whether human prostatic epithelial cells adopt a senescence-associated phenotype after prolonged culture and analyzed a series of human benign prostatic hyperplasia (BPH) specimens to determine whether the cellular senescence process might be a factor in the development of BPH. METHODS A primary culture of epithelial cells was established from the normal tissue of the peripheral zone of a radical prostatectomy specimen and was serially passaged until senescence. Forty-three human prostate specimens were obtained subsequent to radical prostatectomy or transrectal ultrasound-guided biopsy. The cultured cells and tissue specimens were histochemically stained to reveal the expression of SA-beta-gal, the cellular senescence biomarker. RESULTS As has been reported for other types of cultured cells, human prostatic epithelial cells demonstrated widespread expression of the cellular senescence marker, SA-beta-gal, on prolonged culture. In our survey of hypertrophied human prostate tissues, 17 specimens (40%) of the 43 analyzed demonstrated positive staining for SA-beta-gal. In these tissues, SA-beta-gal expression was noted only in the epithelial cells. No statistical correlation (P = 0.42) between the chronologic age of the patient donor and SA-beta-gal expression was found. However, a high prostate weight (greater than 55 g) was found to correlate strongly with the expression of the SA-beta-gal biomarker (P = 0. 0001). CONCLUSIONS Cultured prostatic epithelial cells expressed SA-beta-gal on reaching replicative senescence in vitro. The survey of human BPH specimens for the senescent marker showed that prostatic epithelial cells in patients with BPH with more advanced enlargement of the prostate (greater than 55 g prostate weight) expressed SA-beta-gal, and the prostates from patients with BPH that weighed less than 55 g tended to lack senescent epithelial cells. On the basis of these results, we propose that the accumulation of senescent epithelial cells may play a role in the development of the prostatic enlargement associated with BPH.
IEEE Transactions on Biomedical Engineering | 2010
James J. Choi; Jameel A. Feshitan; Babak Baseri; Shougang Wang; Yao-Sheng Tung; Mark A. Borden; Elisa E. Konofagou
The therapeutic efficacy of neurological agents is severely limited, because large compounds do not cross the blood-brain barrier (BBB). Focused ultrasound (FUS) sonication in the presence of microbubbles has been shown to temporarily open the BBB, allowing systemically administered agents into the brain. Until now, polydispersed microbubbles (1-10 ¿m in diameter) were used, and, therefore, the bubble sizes better suited for inducing the opening remain unknown. Here, the FUS-induced BBB opening dependence on microbubble size is investigated. Bubbles at 1-2 and 4-5 ¿m in diameter were separately size-isolated using differential centrifugation before being systemically administered in mice (n = 28). The BBB opening pressure threshold was identified by varying the peak-rarefactional pressure amplitude. BBB opening was determined by fluorescence enhancement due to systemically administered, fluorescent-tagged, 3-kDa dextran. The identified threshold fell between 0.30 and 0.46 MPa in the case of 1-2 ¿m bubbles and between 0.15 and 0.30 MPa in the 4-5 ¿m case. At every pressure studied, the fluorescence was greater with the 4-5 ¿m than with the 1-2 ¿m bubbles. At 0.61 MPa, in the 1-2 ¿m bubble case, the fluorescence amount and area were greater in the thalamus than in the hippocampus. In conclusion, it was determined that the FUS-induced BBB opening was dependent on both the size distribution in the injected microbubble volume and the brain region targeted.
Physics in Medicine and Biology | 2010
Yao-Sheng Tung; Fotios Vlachos; James J. Choi; Thomas Deffieux; Kirsten Selert; Elisa E. Konofagou
The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice and IC may not be required for BBB opening at relatively low pressures.
Physics in Medicine and Biology | 2007
James J. Choi; Mathieu Pernot; Truman R. Brown; Scott A. Small; Elisa E. Konofagou
The deposition of gadolinium through ultrasound-induced blood-brain barrier (BBB) openings in the murine hippocampus was investigated. First, wave propagation simulations through the intact mouse skull revealed minimal beam distortion while thermal deposition simulations, at the same sonication parameters used to induce BBB opening in vivo, revealed temperature increases lower than 0.5 degrees C. The simulation results were validated experimentally in ex vivo skulls (m = 6) and in vitro tissue specimens. Then, in vivo mice (n = 9) were injected with microbubbles (Optison; 25-50 microl) and sonicated (frequency: 1.525 MHz, pressure amplitudes: 0.5-1.1 MPa, burst duration: 20 ms, duty cycle: 20%, durations: 2-4 shots, 30 s per shot, 30 s interval) at the left hippocampus, through intact skin and skull. Sequential, high-resolution, T1-weighted MRI (9.4 Tesla, in-plane resolution: 75 microm, scan time: 45-180 min) with gadolinium (Omniscan; 0.5 ml) injected intraperitoneally revealed a threshold of the BBB opening at 0.67 MPa and BBB closing within 28 h from opening. The contrast-enhancement area and gadolinium deposition path were monitored over time and the influence of vessel density, size and location was determined. Sonicated arteries, or their immediate surroundings, depicted greater contrast enhancement than sonicated homogeneous brain tissue regions. In conclusion, gadolinium was delivered through a transiently opened BBB and contained to a specific brain region (i.e., the hippocampus) using a single-element focused ultrasound transducer. It was also found that the amount of gadolinium deposited in the hippocampal region increased with the acoustic pressure and that the spatial distribution of the BBB opening was determined not only by the ultrasound beam, but also by the vasculature of the targeted brain region.
Ultrasound in Medicine and Biology | 2010
James J. Choi; Shougang Wang; Yao-Sheng Tung; Barclay Morrison; Elisa E. Konofagou
Focused ultrasound (FUS) is hereby shown to noninvasively and selectively deliver compounds at pharmacologically relevant molecular weights through the opened blood-brain barrier (BBB). A complete examination on the size of the FUS-induced BBB opening, the spatial distribution of the delivered agents and its dependence on the agents molecular weight were imaged and quantified using fluorescence microscopy. BBB opening in mice (n=13) was achieved in vivo after systemic administration of microbubbles and subsequent application of pulsed FUS (frequency: 1.525MHz, peak-rarefactional pressure in situ: 570 kPa) to the left murine hippocampus through the intact skin and skull. BBB-impermeant, fluorescent-tagged dextrans at three distinct molecular weights spanning over several orders of magnitude were systemically administered and acted as model therapeutic compounds. First, dextrans of 3 and 70 kDa were delivered trans-BBB while 2000 kDa dextran was not. Second, compared with 70 kDa dextran, a higher concentration of 3 kDa dextran was delivered through the opened BBB. Third, the 3 and 70 kDa dextrans were both diffusely distributed throughout the targeted brain region. However, high concentrations of 70 kDa dextran appeared more punctated throughout the targeted region. In conclusion, FUS combined with microbubbles opened the BBB sufficiently to allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the brain parenchyma. This noninvasive and localized BBB opening technique could, thus, provide a unique means for the delivery of compounds of several magnitudes of kDa that include agents with shown therapeutic promise in vitro but whose in vivo translation has been hampered by their associated BBB impermeability. (E-mail: [email protected]).
Ultrasound in Medicine and Biology | 2010
Babak Baseri; James J. Choi; Yao-Sheng Tung; Elisa E. Konofagou
As a potentially viable method of brain drug delivery, the safety profile of blood-brain barrier (BBB) opening using focused ultrasound (FUS) and ultrasound contrast agents (UCA) needs to be established. In this study, we provide a short-term (30-min or 5-h survival) histological assessment of murine brains undergoing FUS-induced BBB opening. Forty-nine mice were intravenously injected with Definity microbubbles (0.05 microL/kg) and sonicated under the following parameters: frequency of 1.525 MHz, pulse length of 20 ms, pulse repetition frequency of 10 Hz, peak rarefactional acoustic pressures of 0.15-0.98 MPa and two 30-s sonication intervals with an intermittent 30-s delay. The BBB opening threshold was found to be 0.15-0.3 MPa based on fluorescence and magnetic resonance imaging of systemically injected tracers. Analysis of three histological measures in hematoxylin and eosin-stained sections revealed the safest acoustic pressure to be within the range of 0.3-0.46 MPa in all examined time periods post sonication. Across different pressure amplitudes, only the samples 30 min post opening showed significant difference (p < 0.05) in the average number of distinct damaged sites, microvacuolated sites, dark neurons and sites with extravasated erythrocytes. Enhanced fluorescence around severed microvessels was also noted and found to be associated with the largest tissue effects, whereas mildly diffuse BBB opening with uniform fluorescence in the parenchyma was associated with no or mild tissue injury. Region-specific areas of the sonicated brain (thalamus, hippocampal fissure, dentate gyrus and CA3 area of hippocampus) exhibited variation in fluorescence intensity based on the position, orientation and size of affected vessels. The results of this short-term histological analysis demonstrated the feasibility of a safe FUS-UCA-induced BBB opening under a specific set of sonication parameters and provided new insights on the mechanism of BBB opening.
Proceedings of the National Academy of Sciences of the United States of America | 2011
James J. Choi; Kirsten Selert; Fotios Vlachos; Anna Wong; Elisa E. Konofagou
Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood–brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 μs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.
Journal of Cerebral Blood Flow and Metabolism | 2011
James J. Choi; Kirsten Selert; Zimeng Gao; Gesthimani Samiotaki; Babak Baseri; Elisa E. Konofagou
Ultrasound methods in conjunction with microbubbles have been used for brain drug delivery, treatment of stroke, and imaging of cerebral blood flow. Despite advances in these areas, questions remain regarding the range of ultrasound parameters that disrupt the blood–brain barrier (BBB). In this study, several conditions were investigated to either enhance or reduce the likelihood of BBB disruption. Pulsed focused ultrasound (frequency: 1.5 MHz, pressure: 0.46 MPa, pulse repetition frequency (PRF): 0.1 to 25 Hz, pulse length (PL): 0.03 to 30 milliseconds) was noninvasively and locally administered to a predetermined region in the left hemisphere in the presence of circulating preformed microbubbles (Definity, Lantheus Medical Imaging, N. Billerica, MA, USA; 0.01, 0.05, 0.25 μL/g). Trans-BBB delivery of 3-kDa dextran was observed at PRFs as low as 1 Hz, whereas consistent delivery was observed at 5 Hz and above. Delivery was demonstrated at a PL as low as 33 microseconds. Although the delivered dextran concentration increased with the PL, this also increased the heterogeneity of the resulting distribution. In conclusion, key parameters that disrupt the BBB were identified out of a wide range of conditions. Reducing the total number of emitted acoustic cycles by shortening the PL, or decreasing the PRF, was also found to facilitate a more spatially uniform distribution of delivered dextran.
Ultrasonic Imaging | 2008
James J. Choi; Shougang Wang; Truman R. Brown; Scott A. Small; Karen Duff; Elisa E. Konofagou
The spatio-temporal nature of focused ultrasound-induced blood-brain barrier (BBB) opening as a brain drug delivery method was investigated in Alzheimers disease model mice. The left hippocampus of transgenic (APP/PS1, n = 3) and nontransgenic (n = 3) mice was sonicated (frequency: 1.525 MHz, peak-negative pressure: 600 kPa, pulse length: 20 ms, duty cycle: 20%, duration: 1 min) in vivo, through their intact skin and skull, after intravenous injection of microbubbles (SonoVue®5; 25 μl). Sequential, high-field MR images (9.4 Tesla) were acquired before and after injection of gadolinium (Omniscan™ 0.75 ml, molecular weight: 573.7 Da) on two separate days for each mouse. Gadolinium deposits through the ultrasound-induced BBB opening in the left hippocampus revealed significant contrast-enhancement in the MRI. On the following day, MRI revealed significant BBB closure within the same region. However, the BBB opening extent and BBB closing timeline varied in different regions within the same sonicated location. This indicates that opening and closing were dependent on the brain region targeted. No significant difference in BBB opening or closing behaviors was observed between the APP/PS1 and the nontransgenic mice. In conclusion, a BBB-impermeable molecule was noninvasively, transiently and reproducibly delivered to the hippocampus of Alzheimers APP/PS1 mice.
Physics in Medicine and Biology | 2012
Babak Baseri; James J. Choi; Thomas Deffieux; Gesthimani Samiotaki; Yao-Sheng Tung; Oluyemi Olumolade; Scott A. Small; Barclay Morrison; Elisa E. Konofagou
The brain-derived neurotrophic factor (BDNF) has been shown to have broad neuroprotective effects in addition to its therapeutic role in neurodegenerative disease. In this study, the efficacy of delivering exogenous BDNF to the left hippocampus is demonstrated in wild-type mice (n = 7) through the noninvasively disrupted blood-brain barrier (BBB) using focused ultrasound (FUS). The BDNF bioactivity was found to be preserved following delivery as assessed quantitatively by immunohistochemical detection of the pTrkB receptor and activated pAkt, pMAPK, and pCREB in the hippocampal neurons. It was therefore shown for the first time that systemically administered neurotrophic factors can cross the noninvasively disrupted BBB and trigger neuronal downstream signaling effects in a highly localized region in the brain. This is the first time that the administered molecule is tracked through the BBB and localized in the neuron triggering molecular effects. Additional preliminary findings are shown in wild-type mice with two additional neurotrophic factors such as the glia-derived neurotrophic factor (n = 12) and neurturin (n = 2). This further demonstrates the impact of FUS for the early treatment of CNS diseases at the cellular and molecular level and strengthens its premise for FUS-assisted drug delivery and efficacy.