Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James J. Hack is active.

Publication


Featured researches published by James J. Hack.


Journal of Climate | 2006

The Community Climate System Model version 3 (CCSM3)

William D. Collins; Cecilia M. Bitz; Maurice L. Blackmon; Gordon B. Bonan; Christopher S. Bretherton; James A. Carton; Ping Chang; Scott C. Doney; James J. Hack; Thomas B. Henderson; Jeffrey T. Kiehl; William G. Large; Daniel S. McKenna; Benjamin D. Santer; Richard D. Smith

Abstract The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol ...


Journal of Climate | 1998

The National Center for Atmospheric Research Community Climate Model: CCM3*

J. T. Kiehl; James J. Hack; Gordon B. Bonan; B. A. Boville; David L. Williamson; P. J. Rasch

The latest version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) is described. The changes in both physical and dynamical formulation from CCM2 to CCM3 are presented. The major differences in CCM3 compared to CCM2 include changes to the parameterization of cloud properties, clear sky longwave radiation, deep convection, boundary layer processes, and land surface processes. A brief description of each of these parameterization changes is provided. These modifications to model physics have led to dramatic improvements in the simulated climate of the CCM. In particular, the top of atmosphere cloud radiative forcing is now in good agreement with observations, the Northern Hemisphere winter dynamical simulation has significantly improved, biases in surface land temperatures and precipitation have been substantially reduced, and the implied ocean heat transport is in very good agreement with recent observational estimates. The improvement in implied ocean heat transport is among the more important attributes of the CCM3 since it is used as the atmospheric component of the NCAR Climate System Model. Future improvements to the CCM3 are also discussed.


Journal of Climate | 2006

The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3)

William D. Collins; Philip J. Rasch; Byron A. Boville; James J. Hack; James R. McCaa; David L. Williamson; Bruce P. Briegleb; Cecilia M. Bitz; Shian-Jiann Lin; Minghua Zhang

Abstract A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surfac...


Archive | 1996

Description of the NCAR Community Climate Model (CCM3)

T. Kiehl; James J. Hack; B. Bonan; A. Boville; P. Briegleb; L. Williamson; J. Rasch

This repor presents the details of the governing equations, physical parameterizations, and numerical algorithms defining the version of the NCAR Community Climate Model designated CCM3. The material provides an overview of the major model components, and the way in which they interact as the numerical integration proceeds. This version of the CCM incorporates significant improvements to the physic package, new capabilities such as the incorporation of a slab ocean component, and a number of enhancements to the implementation (e.g., the ability to integrate the model on parallel distributed-memory computational platforms).


Bulletin of the American Meteorological Society | 2013

The Community Earth System Model: A Framework for Collaborative Research

James W. Hurrell; Marika M. Holland; Peter R. Gent; Steven J. Ghan; Jennifer E. Kay; Paul J. Kushner; Jean-Francois Lamarque; William G. Large; David M. Lawrence; Keith Lindsay; William H. Lipscomb; Matthew C. Long; Natalie M. Mahowald; Daniel R. Marsh; Richard Neale; Philip J. Rasch; Steven J. Vavrus; Mariana Vertenstein; David C. Bader; William D. Collins; James J. Hack; Jeffrey T. Kiehl; Shawn J. Marshall

The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad com...


Journal of Computational Physics | 1992

A standard test set for numerical approximations to the shallow water equations in spherical geometry

David L. Williamson; John B. Drake; James J. Hack; Rüdiger Jakob; Paul N. Swarztrauber

A suite of seven test cases is proposed for the evaluation of numerical methods intended for the solution of the shallow water equations in spherical geometry. The shallow water equations exhibit the major difficulties associated with the horizontal dynamical aspects of atmospheric modeling on the spherical earth. These cases are designed for use in the evaluation of numerical methods proposed for climate modeling and to identify the potential trade-offs which must always be made in numerical modeling. Before a proposed scheme is applied to a full baroclinic atmospheric model it must perform well on these problems in comparison with other currently accepted numerical methods. The cases are presented in order of complexity. They consist of advection across the poles, steady state geostrophically balanced flow of both global and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves, and observed atmospheric states. One of the cases is also identified as a computer performance/algorithm efficiency benchmark for assessing the performance of algorithms adapted to massively parallel computers.


Journal of Climate | 2008

A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model

James W. Hurrell; James J. Hack; Dennis J. Shea; Julie M. Caron; James M. Rosinski

A new surface boundary forcing dataset for uncoupled simulations with the Community Atmosphere Model is described. It is a merged product based on the monthly mean Hadley Centre sea ice and SST dataset version 1 (HadISST1) and version 2 of the National Oceanic and Atmospheric Administration (NOAA) weekly optimum interpolation (OI) SST analysis. These two source datasets were also used to supply ocean surface information to the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). The merged product provides monthly mean sea surface temperature and sea ice concentration data from 1870 to the present: it is updated monthly, and it is freely available for community use. The merging procedure was designed to take full advantage of the higher-resolution SST information inherent in the NOAA OI.v2 analysis.


Journal of Geophysical Research | 1994

Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2)

James J. Hack

The National Center for Atmospheric Research (NCAR) community climate model (CCM) has historically made use of a moist adiabatic adjustment procedure for parameterizing the effects of moist convection. The most recent version of the NCAR CCM, CCM2, has abandoned this approach in favor of a stability-dependent mass-flux representation of moist convective processes. This scheme physically constrains the process of moist convection with the use of a simple bulk cloud model, which provides a basis for estimating convective-scale transports of heat, moisture, and other atmospheric constituents as well as the diabatic heating associated with condensation and the fallout of precipitation. This paper presents the formalism associated with this simple mass-flux approach and contrasts its behavior with the moist adiabatic adjustment procedure used in earlier models. The inclusion of this scheme significantly moistens and warms the model troposphere at all latitudes but particularly in the tropics. Additionally, the simulated magnitude, structure, and location of the large-scale mean circulations are generally improved. The sensitivity of the simulated climate to the formulation of the cloud model is also presented.


Climate Dynamics | 1996

Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject

Julia Slingo; Kenneth R. Sperber; J. S. Boyle; J.-P. Céron; M. Dix; B. Dugas; Wesley Ebisuzaki; John C. Fyfe; D. Gregory; J.-F. Gueremy; James J. Hack; A. Harzallah; P. M. Inness; A. Kitoh; William K. M. Lau; B. J. McAvaney; Roland A. Madden; Adrian J. Matthews; T. N. Palmer; C.-K. Parkas; David A. Randall; N. Renno

The ability of 15 atmospheric general circulation models (AGCM) to simulate the tropical intraseasonal oscillation has been studied as part of the Atmospheric Model Intercomparison Project (AMIP). Time series of the daily upper tropospheric velocity poential and zonal wind, averaged over the equatorial belt, were provided from each AGCM simulation. These data were analyzed using a variety of techniques such as time filtering and space-time spectral analysis to identify eastward and westward moving waves. The results have been compared with an identical assessment of the European Centre for Medium-range Weather Forecasts (ECMWF) analyses for the period 1982–1991. The models display a wide range of skill in simulating the intraseasonal oscillation. Most models show evidence of an eastward propagating anomaly in the velocity potential field, although in some models there is a greater tendency for a standing oscillation, and in one or two the field is rather chaotic with no preferred direction of propagation. Where a model has a clear eastward propagating signal, typical periodicities seem quite reasonable although there is a tendency for the models to simulate shorter periods than in the ECMWF analyses, where it is near 50 days. The results of the space-time spectral analysis have shown that no model has captured the dominance of the intraseasonal oscillation found in the analyses. Several models have peaks at intraseasonal time scales, but nearly all have relatively more power at higher frequencies (< 30 days) than the analyses. Most models underestimate the strength of the intraseasonal variability. The observed intraseasonal oscillation shows a marked seasonality in its occurrence with greatest activity during northern winter and spring. Most models failed to capture this seasonality. The interannual variability in the activity of the intraseasonal oscillation has also been assessed, although the AMIP decade is too short to provide any conclusive results. There is a suggestion that the observed oscillation was suppressed during the strong El Niño of 1982/83, and this relationship has also been reproduced by some models. The relationship between a models intraseasonal activity, its seasonal cycle and characteristics of its basic climate has been examined. It is clear that those models with weak intraseasonal activity tend also to have a weak seasonal cycle. It is becoming increasingly evident that an accurate description of the basic climate may be a prerequisite for producing a realistic intraseasonal oscillation. In particular, models with the most realistic intraseasonal oscillations appear to have precipitation distributions which are better correlated with warm sea surface temperatures. These models predominantly employ convective parameterizations which are closed on buoyancy rather than moisture convergence.


Science | 1995

Absorption of Solar Radiation by Clouds: Observations Versus Models

Robert D. Cess; Minghua Zhang; Patrick Minnis; L. Corsetti; Ellsworth G. Dutton; Bruce Forgan; D. P. Garber; W. L. Gates; James J. Hack; Edwin F. Harrison; X. Jing; Jeffrey T. Kiehl; C. N. Long; J.-J. Morcrette; G. L. Potter; V. Ramanathan; B. Subasilar; C. H. Whitlock; David F. Young; Y. Zhou

There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmospheres energy budget.

Collaboration


Dive into the James J. Hack's collaboration.

Top Co-Authors

Avatar

Jeffrey T. Kiehl

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

David L. Williamson

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William D. Collins

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Philip J. Rasch

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Byron A. Boville

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie M. Caron

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge